Recolección de muestras de diversidad microbiana en el aire y análisis de la calidad del aire en un entorno escolar brasileño
DOI:
https://doi.org/10.33448/rsd-v14i5.47514Palabras clave:
Contaminación del aire; Ambiente escolar; Muestreo microbiano; Sedimentación pasiva; Áreas interiores y exteriores; Análisis microbiano.Resumen
Los microorganismos son esenciales para los ecosistemas, desempeñando roles cruciales en la salud ambiental, humana y animal. En salud pública y One Health, comprender su dinámica en el ambiente es clave para prevenir y controlar enfermedades. Este estudio investiga la diversidad de bacterias transportadas por el aire en un ambiente escolar en Cuiabá, Brasil, mediante la técnica de sedimentación pasiva. Se recolectaron muestras de aire en zonas internas y externas, como baño, cafetería, sala de profesores, aula y una cancha deportiva. En cada sitio, dos placas de Petri se expusieron por 15 minutos. Las muestras fueron incubadas por 48 horas a 37°C, seguidas de análisis morfológico y examen microscópico. Sorprendentemente, las áreas externas, especialmente la cancha, mostraron mayores concentraciones de bacterias, lo que contrasta con la creencia de una mayor carga microbiana en espacios cerrados. Esto resalta que incluso áreas ventiladas naturalmente requieren atención para garantizar la calidad del aire en espacios públicos. Además, se observó crecimiento de hongos en dos muestras, destacando los riesgos ambientales. Los resultados subrayan la importancia de mejorar las estrategias de higiene y gestión ambiental en escuelas para mitigar los riesgos de exposición a microorganismos transportados por el aire.
Citas
Abel, E., Andersson, J. V., Dawidowicz, N., Christophersen, E., Hanssen, S. O., Lindén, A. L., ... & Pasanen, A. L. (2002). The Swedish key action “the healthy building” – Research results achieved during the first three years period 1998-2000. In H. Levin (Ed.), Indoor Air 2002. Proceedings of the 9th International Conference on Indoor Air Quality and Climate (pp. 996–1001). Indoor Air 2002.
Ahmednur, M., Awel, H., & Haile, G. (2022). Microbial indoor air quality and associated factors in Jimma Town Prison Administration, Southwestern Ethiopia. Environmental Health Insights, 16, 1–8. https://doi.org/10.1177/11786302221118842.
American Public Health Association. (2001). Compendium of methods for the microbiological examination of foods (4th ed., pp. 25–36). Washington, DC: APHA.
ASHRAE. (1999). Ventilation for acceptable indoor air quality (Standard 62-1999). American Society for Heating, Refrigerating, and Air-Conditioning Engineers.
Asim, N., Badiei, M., Mohammad, M., Razali, H., Rajabi, A., Chin Haw, L., & Jameelah Ghazali, M. (2022). Sustainability of heating, ventilation and air-conditioning (HVAC) systems in buildings—An overview. International journal of environmental research and public health, 19(2), 1016.
Ayerst, G. (1969). The effects of moisture and temperature on growth and spore germination in some fungi. Journal of Stored Products Research, 5(2), 127–141. https://doi.org/10.1016/0022-474X(69)90055-1.
Basińska, M., Michałkiewicz, M., & Ratajczak, K. (2019). Impact of physical and microbiological parameters on proper indoor air quality in nursery. Environment international, 132, 105098.
Brink, H. W., Loomans, M. G., Mobach, M. P., & Kort, H. S. (2021). Classrooms' indoor environmental conditions affecting the academic achievement of students and teachers in higher education: A systematic literature review. Indoor air, 31(2), 405-425.
Brown, A. D. (1954). The survival of airborne microorganisms III. Effects of temperature. Australian Journal of Biological Sciences, 7(4), 444-451. https://doi.org/10.1071/BI9540444.
Casey, M. E., Braganza, E. B., Shaughnessy, R. J., & Turk, B. H. (1995). Ventilation improvements in two elementary school classrooms. In Proceedings, Engineering Solutions to Indoor Air Quality Problems Symposium (pp. 237–245). Pittsburgh, PA: Air and Waste Management Association.
Centers for Disease Control and Prevention. (2024, April 15). Staphylococcus aureus basics. https://www.cdc.gov/staphylococcus-aureus/about/index.html.
Chukwu, T. M., Morse, S., & Murphy, R. (2022). Poor air quality in urban settings: A comparison of perceptual indicators, causes and management in two cities. Sustainability, 14(3), 1438.
Coelho, A. Í. M., Milagres, R. C. R. M., Martins, J. F. L., Azeredo, R. M. C., & Santana, Â. M. C. (2010.). Contaminação microbiológica de ambientes e de superfícies em restaurantes comerciais. Ciência & Saúde Coletiva. https://www.scielo.br/j/csc/a/4mgWK8HjydxjrGdtMyHQpjg/.
Commission of the European Communities. (1994). Report No. 12: Biological particles in indoor environments. Commission of the European Communities.
Cunha, V. A. M. G., Oliveira, D. A. B., Bombana, C. C., Pavanelli, M. F., & Parussolo, L. (2013). Quantificação de fungos e bactérias para avaliação do ar interno de uma empresa da região centro-oeste do Paraná. Saúde e Pesquisa, 6(3), 447-452.
Daisey, J. M., Angell, W. J., & Apte, M. G. (2003). Indoor air quality, ventilation and health symptoms in schools: An analysis of existing information. Indoor Air, 13(1), 53–64.
EPA. (2003). Indoor air quality and student performance. United States Environmental Protection Agency. (EPA 402-K-03-006).
Washington, DC: Author.
Fernandes, H. P. (2014). Avaliação microbiológica da qualidade do ar no interior da biblioteca central do campus da Universidade Federal de Juiz de Fora. Juiz de Fora: Faculdade de Engenharia da UFJF.
Fisk, W. J., & Rosenfeld, A. H. (1997). Estimates of improved productivity and health from better indoor environments. Indoor Air, 7, 158-172. https://doi.org/10.1111/j.1600-0668.1997.t01-2-00004.x.
Galičič, A., Rožanec, J., Kukec, A., Medved, S., & Eržen, I. (2024). Assessment of Perceived Indoor Air Quality in the Classrooms of Slovenian Primary Schools and Its Association with Indoor Air Quality Factors, for the Design of Public Health Interventions. Atmosphere, 15(8), 995.
Giyasov, B. (2023, August). The impact of urban high-rise buildings on the environment. In AIP Conference Proceedings (Vol. 2791, No. 1). AIP Publishing.
Grant, C., Hunter, C. A., Flannigan, B., & Bravery, A. F. (1989). The moisture requirements of moulds isolated from domestic dwellings. International Biodeterioration, 25(4), 259–284.
Gupta, S., & Kumar, R. (2023). Urban Areas and Air Pollution: Causes, Concerns, and Mitigation. In Geospatial Analytics for Environmental Pollution Modeling: Analysis, Control and Management (pp. 163-185). Cham: Springer Nature Switzerland.
Gutarowska, B. (2010). Metabolic activity of molds as a factor of building materials biodegradation. Polish Journal of Microbiology, 59(2), 119–124.
Hoang, C. P., Kinney, K. A., Corsi, R. L., & Szaniszlo, P. J. (2010). Resistance of green building materials to fungal growth. International Biodeterioration & Biodegradation, 64(2), 104–113. https://doi.org/10.1016/j.ibiod.2009.11.001.
Igo, M. J., & Schaffner, D. W. (2019). Quantifying the influence of relative humidity, temperature, and diluent on the survival and growth of Enterobacter aerogenes. Journal of food protection, 82(12), 2135-2147.
Ilić, P., Božić, J., & Ilić, S. (2018). Microbiological air contamination in hospital. International Journal of Progressive Sciences and Technologies (IJPSAT), 7(2), 183-191.
Indoor Air Quality (IAQ) Objectives for Offices and Public Places in Hong Kong. (2019). Retrieved from www.iaq.gov.hk/tables.html
Jabeen, R., Kizhisseri, M. I., Mayanaik, S. N., & Mohamed, M. M. (2023). Bioaerosol assessment in indoor and outdoor environments: A case study from India. Scientific Reports, 13(1), 18066.
Jensen, P. A., & Schafer, M. P. (1998). Sampling and characterization of bioaerosols. NIOSH Manual of Analytical Methods, 1(15), 82–112.
Kalender-Smajlović, S., Dovjak, M., & Kukec, A. (2021). Sick building syndrome among healthcare workers and healthcare associates at observed general hospital in Slovenia. Central European Journal of Public Health, 29(1), 28-37.
Karwowska, E. (2003). Microbiological air contamination in some educational settings. Polish Journal of Environmental Studies, 12(2), 181–185.
Kashefi, E., Seyedi, S. J., Zomorodian, K., Zare Shahrabadi, Z., & Zarrinfar, H. (2021). Successful treatment of pulmonary aspergillosis due to Aspergillus fumigatus in a child affected by systemic lupus erythematosus: A case report from Northeastern Iran. Clinical Case Reports, 9(5), e04248.
Katiyar, V. (2013). Assessment of indoor air microflora in selected schools. Advances in Environmental Research, 2(1), 61–80.
Kaushik, A. K., Arif, M., Syal, M. M., Rana, M. Q., Oladinrin, O. T., Sharif, A. A., & Alshdiefat, A. A. S. (2022). Effect of Indoor Environment on Occupant Air Comfort and Productivity in Office Buildings: A Response Surface Analysis Approach. Sustainability, 14(23), 15719.
Kotiranta, A., Lounatmaa, K., & Haapasalo, M. (2000). Epidemiology and pathogenesis of Bacillus cereus infections. Clinical Microbiology and Infection, 2(2), 189-198. https://doi.org/10.1016/S1286-4579(00)00269-0.
Langiano, E., Ferrara, M., Falese, L., Lanni, L., Diotaiuti, P., Di Libero, T., & De Vito, E. (2024). Assessment of indoor air quality in school facilities: An educational experience of pathways for transversal skills and orientation (PCTO). Sustainability, 16(15), 6612.
Liang, L., & Gong, P. (2020). Urban and air pollution: a multi-city study of long-term effects of urban landscape patterns on air quality trends. Scientific reports, 10(1), 18618.
Mannan, M., & Al-Ghamdi, S. G. (2021). Indoor air quality in buildings: a comprehensive review on the factors influencing air pollution in residential and commercial structure. International Journal of Environmental Research and Public Health, 18(6), 3276.
Martinez, T., Bertron, A., Escadeillas, G., & Ringot, E. (2014). Algal growth inhibition on cement mortar: Efficiency of water repellent and photocatalytic treatments under UV/VIS illumination. International Biodeterioration & Biodegradation, 89, 115–125. https://doi.org/10.1016/j.ibiod.2014.01.006.
Moldoveanu, A. M. (2015). Biological contamination of air in indoor spaces. In Current air quality issues. IntechOpen.
Morais, G. R., Silva, M. A. da, Carvalho, M. V. de, Santos, J. G. S. dos, von Dolinger, E. J. O., & von Dolinger de Brito, D. (2010). Qualidade do ar interno em uma instituição de ensino superior brasileira. Biosci. J., 26(2), 305-310.
Nag, P. K., (2019). Sick building syndrome and other building-related illnesses. Office Buildings: Health, Safety and Environment, 53-103.
Nakayama, Y., Nakaoka, H., Suzuki, N., Tsumura, K., Hanazato, M., Todaka, E., & Mori, C. (2019). Prevalence and risk factors of pre-sick building syndrome: characteristics of indoor environmental and individual factors. Environmental health and preventive medicine, 24, 1-10.
Napoli, C., Marcotrigiano, V., & Montagna, M. T. (2012). Air sampling procedures to evaluate microbial contamination: A comparison between active and passive methods in operating theatres. BMC Public Health, 12(1), 594. https://doi.org/10.1186/1471-2458-12-594.
Naruka, K., & Gaur, J. (2013). Microbial air contamination in a school. International Journal of Current Microbiology and Applied Sciences, 2(12), 404-410.
National Academies of Sciences, Engineering, and Medicine. (2017). Microbiomes of the built environment: A research agenda for indoor microbiology, human health, and buildings. The National Academies Press. https://doi.org/10.17226/23647.
Nielsen, O. (1984). Quality of air and the amount of fresh air in classrooms. In B. Berglund, T. Lindvall, & J. Sundell (Eds.), Indoor Air: Buildings, Ventilation and Thermal Climate (Vol. 5, pp. 221–226). Swedish Council for Building Research.
Nuñez, M. (2014). Micrococcus. In Encyclopedia of Food Microbiology (2nd ed.). https://www.sciencedirect.com/topics/medicine-and-dentistry/micrococcus#:~:text=The%20genus%20Micrococcus%20is%20not,valve%20endocarditis%2C%20and%20recurrent%20bacteremia
Obbard, J. P., & Fang, L. S. (2003). Airborne concentrations of bacteria in a hospital environment in Singapore. Water, Air, and Soil Pollution, 144(1), 333–341.
Otto, M. (2020). Staphylococci in the human microbiome: The role of host and interbacterial interactions. Current Opinion in Microbiology, 53, 71-77. https://doi.org/10.1016/j.mib.2020.05.002.
Palacios, J., Eichholtz, P., Kok, N., & Duran, N. (2022). Indoor air quality and learning: evidence from a large field study in primary schools. MIT Center for Real Estate Research Paper, (22/13).
Palaz, E., Menteşe, S., Bayram, A., Kara, M., & Elbir, T. (2023). The effect of different incubation conditions and culture media on airbone bacteria and fungi level. Pamukkale University Journal Of Engineering Sciences-Pamukkale Universitesi Muhendislik Bilimleri Dergisi, (6).
Pasquarella, C., Pitzurra, O., & Savino, A. (2000). The index of microbial air contamination. Journal of Hospital Infection, 46(4), 241–256.
Pathak, A. K., & Verma, K. S. (2009). Aerobacteriological study of vegetables market at Jabalpur. Iranian Journal of Environmental Health Science & Engineering, 6(3), 187-194.
Pegas, P. N., Alves, C. A., Evtyugina, M. G., Alves, L. C., Nunes, T., Cerqueira, M., Franchi, M., Pio, C. A., & Almeida, S. M. (2011). Indoor air quality in elementary schools of Lisbon in spring. Environmental Geochemistry and Health, 33(4, 5), 455–468. https://doi.org/10.1007/s10653-010-9345-3.
Pepper, I. L., & Gerba, C. P. (2015). Aeromicrobiology. Environmental Microbiology, 89–110. https://doi.org/10.1016/B978-0-12-394626-3.00005-3.
Pereira A. S. et al. (2018). Metodologia da pesquisa científica. [free e-book]. Santa Maria/RS. Ed. UAB/NTE/UFSM.
Petrosino, J. F., Highlander, S., Luna, R. A., Gibbs, R. A., & Versalovic, J. (2009). Metagenomic pyrosequencing and microbial identification. *Clinical Chemistry, 55*(5), 856–866. https://doi.org/10.1373/clinchem.2008.107565.
Qiu, Y., Zhou, Y., Chang, Y., Liang, X., Zhang, H., Lin, X., ... & Luo, Z. (2022). The effects of ventilation, humidity, and temperature on bacterial growth and bacterial genera distribution. International Journal of Environmental Research and Public Health, 19(22), 15345.
Qiu, Y., Zhou, Y., Chang, Y., Liang, X., Zhang, H., Lin, X., Qing, K., Zhou, X., & Luo, Z. (2022). The effects of ventilation, humidity, and temperature on bacterial growth and bacterial genera distribution. International Journal of Environmental Research and Public Health, 19(22), 15345. https://doi.org/10.3390/ijerph192215345.
Ruiz-Gil, T., Acuña, J. J., Fujiyoshi, S., Tanaka, D., Noda, J., Maruyama, F., & Jorquera, M. A. (2020). Airborne bacterial communities of outdoor environments and their associated influencing factors. Environment International, 145, 106156.
Seppänen, O. A., Fisk, W. J., & Mendell, M. J. (1999). Association of ventilation rates and CO2 concentrations with health and other responses in commercial and institutional buildings. Indoor Air, 9(4), 226–252. https://doi.org/10.1111/j.1600-0668.1999.00003.x.
Shirakawa, M. A., Gaylarde, C. C., Gaylarde, P. M., John, V., & Gambale, W. (2001). Fungal colonization and succession on newly painted buildings and the effect of biocide. FEMS Microbiology Ecology, 39(2), 165–173. https://doi.org/10.1111/j.1574-6941.2001.tb00797.x
Silaen, S. (2024). The Presence of Pathogenic Bacteria in School Children’s Snack Food Samples in Medan City. Journal of Research in Science and Mathematics Education, 3(2), 86–96.
Smith, A. C., & Hussey, M. A. (2016). Gram stain protocols. American Society for Microbiology. https://asm.org/getattachment/5c95a063-326b-4b2f-98ce-001de9a5ece3/gram-stain-protocol-2886.pdf.
Srikanth, P., Sudharsanam, S., & Steinberg, R. (2008). Bio-aerosols in indoor environment: Composition, health effects and analysis. Indian Journal of Medical Microbiology, 26(4), 302-312. https://doi.org/10.4103/0255-0857.43555.
Stryjakowska-Sekulska, M., Piotraszewska-Pająk, A., Szyszka, A., Nowicki, M., & Filipiak, M. (2007). Microbiological quality of indoor air in university rooms. Polish Journal of Environmental Studies, 16(4), 623–632.
Thorstensen, E., Hansen, C., Pejtersen, J., Clausen, G. H., & Fanger, P. O. (1990). Air pollution sources and indoor air quality in schools. In Proceedings of the 5th International Conference on Air Quality and Climate (pp. 531-536), July 29-August 3, Toronto, Canada.
Turk, B. H., Grimsrud, D. T., Brown, J. T., Geisling-Sobotka, K., Harrison, J., & Prill, R. J. (1989). Commercial building ventilation rates and particle concentrations. ASHRAE Transactions, 95, 422–433.
Turk, B. H., Powell, G., Fisher, E., Ligman, B., Harrison, J., Brennan, T., & Shaughnessy, R. (1993). Improving general indoor air quality while controlling specific pollutants in schools. In Proceedings of Indoor Air '93: The 6th International Conference on Indoor Air Quality and Climate (Vol. 6, pp. 705–710). Helsinki, Finland.
Turnbull, P. C. B. (1996). Bacillus. In Medical Microbiology (4th ed.). https://www.ncbi.nlm.nih.gov/books/NBK7699/#:~:text=Although%20anthrax%20remains%20the%20best,ophthalmitis%2C%20osteomyelitis%2C%20peritonitis%2C%20and.
U.S. Environmental Protection Agency. (1996). Indoor air quality basics for schools. Washington, DC: Author.
U.S. Environmental Protection Agency. (n.d.). Indoor microbiome. U.S. Environmental Protection Agency. Retrieved September 17, 2024, from https://www.epa.gov/indoor-air-quality-iaq/indoor-microbiome.
Verdier, T., Coutand, M., Bertron, A., & Roques, C. (2014). A review of indoor microbial growth across building materials and sampling and analysis methods. Building and Environment, 80, 136–149. https://doi.org/10.1016/j.buildenv.2014.05.021.
Viani, I., Colucci, M. E., Pergreffi, M., Rossi, D., Veronesi, L., Bizzarro, A., Capobianco, E., Affanni, P., Zoni, R., Saccani, E., Albertini, R., & Pasquarella, C. (2020). Passive air sampling: The use of the index of microbial air contamination. Acta Biomedica, 91(3-S), 92–105. https://doi.org/10.23750/abm.v91i3-S.9434.
Viegas, C., Pimenta, R., Dias, M., Gomes, B., Brito, M., Caetano, L. A., Carolino, E., & Gomes, A. Q. (2021). Microbiological contamination assessment in higher education institutes. Atmosphere, 12(8), 1079. https://doi.org/10.3390/atmos12081079.
von Eiff, C., Kuhn, N., Herrmann, M., Weber, S., & Peters, G. (1996). Micrococcus luteus as a cause of recurrent bacteremia. The Pediatric Infectious Disease Journal, 15(8), 711-713. https://doi.org/10.1097/00006454-199608000-00015.
Wargocki, P. (2022). Effects of classroom air quality on learning in schools. In Handbook of Indoor Air Quality (pp. 1447-1459). Singapore: Springer Nature Singapore.
Watson, S. (2022). Boil vs. pimple: What’s the difference? Healthline. https://www.healthline.com/health/boil-vs-pimple#prevention
WebMD. (n.d.). What can you catch in restrooms? Bathroom paranoia. WebMD. Retrieved September 25, 2024, from https://www.webmd.com/balance/features/what-can-you-catch-in-restrooms.
Wiktor, V., De Leo, F., Urzì, C., Guyonnet, R., Grosseau, P., & Garcia-Diaz, E. (2009). Accelerated laboratory test to study fungal biodeterioration of cementitious matrix. International Biodeterioration & Biodegradation, 63(10), 1061–1065.
Wilimzig, M., & Bock, E. (1994). Attack of mortar by bacteria and fungi. Werkstoffe und Korrosion, 45(3), 117–118.
World Health Organization. (2009). WHO guidelines for indoor air quality: Dampness and mold. WHO Press.
World Health Organization. (2023, December 15). Household air pollution and health. https://www.who.int/en/news-room/fact-sheets/detail/household-air-pollution-and-health.
Wright, D. N., Bailey, G. D., & Goldberg, L. J. (1969). Effect of temperature on survival of airborne Mycoplasma pneumoniae. Journal of Bacteriology, 99(2), 491-495. https://doi.org/10.1128/jb.99.2.491-495.1969.
Wu, B., & Liu, C. (2023). Impacts of Building Environment and Urban Green Space Features on Urban Air Quality: Focusing on Interaction Effects and Nonlinearity. Buildings, 13(12), 3111.
Xie, W., Li, Y., Bai, W., Hou, J., Ma, T., Zeng, X., ... & An, T. (2021). The source and transport of bioaerosols in the air: A review. Frontiers of Environmental Science & Engineering, 15, 1-19.
Zuo, Z., Pan, Y., Huang, X., Yuan, T., Liu, C., Cai, X., & Xu, Z. (2024). Seasonal distribution of human-to-human pathogens in airborne PM2. 5 and their potential high-risk ARGs. Frontiers in Microbiology, 15, 1422637.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2025 Fernanda Lucia Pinheiro Marques de Sousa; Isabella Smagasz Barros Schneider; Isabela Finocchi Bussiki Cuiabano; Julia Rubina Passare; Maria Clara Capelezzo Palhano; Paloma Dierings Côrtes

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Los autores que publican en esta revista concuerdan con los siguientes términos:
1) Los autores mantienen los derechos de autor y conceden a la revista el derecho de primera publicación, con el trabajo simultáneamente licenciado bajo la Licencia Creative Commons Attribution que permite el compartir el trabajo con reconocimiento de la autoría y publicación inicial en esta revista.
2) Los autores tienen autorización para asumir contratos adicionales por separado, para distribución no exclusiva de la versión del trabajo publicada en esta revista (por ejemplo, publicar en repositorio institucional o como capítulo de libro), con reconocimiento de autoría y publicación inicial en esta revista.
3) Los autores tienen permiso y son estimulados a publicar y distribuir su trabajo en línea (por ejemplo, en repositorios institucionales o en su página personal) a cualquier punto antes o durante el proceso editorial, ya que esto puede generar cambios productivos, así como aumentar el impacto y la cita del trabajo publicado.