Evaluación del índice de vegetación y la concentración de metales en sedimentos en la microcuenca Tarumã-Mato Grosso do Sul, Brasil

Autores/as

DOI:

https://doi.org/10.33448/rsd-v9i7.4862

Palabras clave:

Ambientes acuáticos; Cobertura vegetal; Calidad ambiental; Contaminantes.

Resumen

El objetivo del estudio fue evaluar los parámetros cuantitativos físico-químicos del agua en corrientes en la microcuenca Tarumã (MS, Brasil), cuantificar metales (Cd, Pb, Cr, Cu, Fe, Zn y Ni) en los sedimentos del fondo de estas corrientes y evaluar cualitativamente y cuantitativamente el índice de vegetación de la diferencia normalizada de ubicaciones (NDVI) mediante imágenes satelitales. Los valores de turbidez y conductividad eléctrica del agua fueron más altos en los puntos más cercanos a la región urbana. En el análisis NDVI, los puntos P1, P2 y P4 mostraron una vegetación ribereña local reducida, clasificada como baja o muy baja. En los lugares P3, P5 y P6 encontramos mayores proporciones de vegetación a niveles moderados y bajos. Con respecto a los metales en los sedimentos, todos los puntos muestreados tenían concentraciones de metales por debajo de los límites establecidos por la legislación vigente. La baja tasa de cobertura vegetal alrededor de los arroyos en la microcuenca Tarumã, especialmente en los manantiales, puede comprometer el equilibrio de este sistema.

Citas

Akindele, E. O, Omisakin, O. D, Oni, A. O, Aliu, O. O, Omoniyi, G. E & Akinpelu, O. T. (2020). Heavy metal toxicity in the water column and benthic sediments of a degraded tropical stream. Ecotoxicology and Environmental Safety, 190:110153. doi: https://doi.org/10.1016/j.ecoenv.2019.110153.

Ardeshir, R. A, Zolgharnein, H, Movahedinia, A, Salamat, N & Zabihi, E. (2017). Comparison of waterborne and intraperitoneal exposure to fipronil in the Caspian white fish (Rutilus frisii) on acute toxicity and histopathology. Toxicology Reports, 4:348-357. doi: 10.1016/j.toxrep.2017.06.010.

Betemps, G. R & Sanches Filho, P. J. (2012). Estudo sazonal de metais pesados no sedimento do Saco do Laranjal–Pelotas-RS. Ecotoxicology and Environmental Contamination, 7(2):79-84. doi: 10.5132/jbse.2012.02.012.

Brothers, S. M, Hilt, S, Meyer, S & Kohler, J. (2013). Plant community structure determines primary productivity in shallow, eutrophic lakes. Freshwater Biology, 58(11):2264-2276. doi: https://doi.org/10.1111/fwb.12207.

Companhia de Tecnologia de Saneamento Ambiental (CETESB). Relatório de Qualidade das Águas Interiores do Estado de São Paulo. (2014). Série Relatórios. Apêndice A: Significado Ambiental e Sanitário das Variáveis de Qualidade das Águas e dos Sedimentos e Metodologias Analíticas e de Amostragem. Acesso: Fev. 2020.

Cherubin, M. R, Franco, A. L. C, Cerri, C. E. P, Karlen, D. L, Pavinato, P. S, Rodrigues, M, Davies, C. A & Cerri, C. C. (2016). Phosphorus pools responses to land-use change for sugarcane expansion in weathered Brazilian soils. Geoderma, 265:27-38. doi: https://doi.org/10.1016/j.geoderma.2015.11.017.

Conselho Nacional do Meio Ambiente (CONAMA). Resolução n 357, 2005. Diário Oficial da União de 17 de Março de 2005. http://www.mma.gov.br/port/conama/legiabre.cfm? codlegi=459. Acesso: Fev. 2020.

Conselho Nacional do Meio Ambiente (CONAMA). Resolução n 454, 2012. Diário Oficial da União de 1 de Novembro de 2012. http://www.mma.gov.br/port/conama/legiabre. cfm?codlegi=459. Acesso: Fev. 2020.

Cotta, J. A. O & Rodrigues, M. (2020). Estudo da sorção de chumbo em solos intemperizados e em suas diferentes frações. Research, Society and Development, 9(4):1-17. doi: http://dx.doi.org/10.33448/rsd-v9i4.2306.

De Jonge, M, Belpaire, C, Van Thuyne, G, Breine, J & Bervoets, L. (2015). Temporal distribution of accumulated metal mixtures in two feral fish species and the relation with condition metrics and community structure. Environmental Pollution, 197:43-54. doi: 10.1016/j.envpol.2014.11.024.

Gao, Y, Gao, J, Wang, J, Wang, S, LI, Q, Zhai, S & Zhou, Y. (2017). Estimating the biomass of unevenly distributed aquatic vegetation in a lake using the normalized water-adjusted vegetation index and scale transformation method. Science of the Total Environment, 601: 998-1007. doi: 10.1016/j.scitotenv.2017.05.163.

Hortellani, M. A, Sarkis, J. E. S, Abessa, D. M. S & Sousa, E. C. P. M. (2008). Avaliação da contaminação por elementos metálicos dos sedimentos do Estuário Santos-São Vicente. Química Nova, 31(1):10-19. doi: http://dx.doi.org/10.1590/S0100-4042200 8000100003.

Jesus, I. S, Da Silva Medeiros, R. L, Cestari, M. M, De Almeida Bezerra, M & De Mello Affonso, P. R. (2014). Analysis of metal contamination and bioindicator potential of predatory fish species along Contas River basin in northeastern Brazil. Bulletin of environmental contamination and toxicology, 92(5):551-556. doi: 10.1007/s00128-013-1188-z.

Machado, C. S, Alves, R. I. S, Fregonesi, B. M, Tonani, K. A. A, Martinis, B. S, Sierra, J, Nadal, M, Domingo, J. L & Segura-Muñoz, S. (2016). Procedia Engineering, 162:230-237. doi: https://doi.org/10.1016/j.proeng.2016.11.046.

Melo, G. P, Navoni, J. A, Morais, F. D & Amaral, V. S. (2016). Ecotoxicological water assessment of an estuarine river from the Brazilian Northeast, potentially affected by industrial wastewater discharge. Science of the Total Environment, 572:324-33. doi: 10.1016/j.scitotenv.2016.08.002.

Nourani, V, Fard, A. F, Gupta, H. V, Goodrich, D. C & Niazi, F. (2017). Hydrological model parameterization using NDVI values to account for the effects of land cover change on the rainfall–runoff response. Hydrology Research, 48(6):1455-1473. doi: 10.2166/nh.2017.249.

Paula Filho, F. J, Marins, R. V, Lacerda, L. D, Aguiar, J. E & Peres, T. F. (2014). Background values for evaluation of heavy metal contamination in sediments in the Parnaíba River Delta estuary, NE/Brazil. Marine Pollution Bulletin, 91(2):424-428. doi: https://doi.org/10.1016/j.marpolbul.2014.08.022.

Peluso, L, Abelando, M, Apartín, C. D, Almada, P & Ronco, A. E. (2013). Integrated ecotoxicological assessment of bottom sediments from the Paraná basin, Argentina. Ecotoxicology and Environmental Safety, 98:179-186. doi: 10.1016/j.ecoenv.2013.09.001.

Peng, D, Wu, C, Li, C. C, Zhang, X, Liu, Z, Ye, H, Luo, S, Liu, X & Fang, B. (2017). Spring green-up phenology products derived from MODIS NDVI and EVI: Intercomparison, interpretation and validation using National Phenology Network and AmeriFlux observations. Ecological Indicators, 77:323-336. doi: https://doi.org/10.1016/j.ecolind.2017.02.024.

R Core Team. (2019). R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna http://www. R-project.org.

Ruiz de Arcaute, R, Soloneski, S & Larramendy, M. L. (2016). Toxic and genotoxic effects of the 2, 4-dichlorophenoxyacetic acid (2, 4-D)-based herbicide on the Neotropical fish Cnesterodon decemmaculatus. Ecotoxicology and Environmental Safety, 128:222-229. doi: 10.1016/j.ecoenv.2016.02.027.

Simonato, J. D, Mela, M, Doria, H. B, Guiloski, I. C, Randi, M. A. F, Carvalho, P. S. M, Meletti, P. C Silva De Assis, H. C, Bianchini, A & Martinez, C. B. R. (2016). Biomarkers of waterborne copper exposure in the Neotropical fish Prochilodus lineatus. Aquat Toxicol, 170 (1):31-41. doi: 10.1016/j.aquatox.2015.11.012.

Souza, R. G & Lima-Junior, S. E. (2013). Influence of environmental quality on the diet of Astyanax in a microbasin of central western Brazil. Acta Scientiarum. Biological Sciences, 35(2):177-184. doi: 10.4025/actascibiolsci.v34i2.

Sweeney, B. W, Bott, T. L, Jackson, J. K, Kaplan, L. A, Newbold, J. D, Standley, . J, Hession, W. C & Horwitz, R. J. (2004). Riparian deforestation, stream narrowing, and loss of stream ecosystem services. Proceedings of the National Academy of Sciences, 101 (39):14132-14137. doi: https://doi.org/10.1073/pnas.0405895101.

Tundisi, J. G & Tundisi, T. M. (2010). Impactos potenciais das alterações do Código Florestal nos recursos hídricos. Biota Neotropica, 10(4):67-75. doi: http://dx.doi.org/10.1590/S1676-06032010000400010.

Viana, L. F, Súarez, Y. R & Lima-Junior, S. E. (2013). Influence of environmental integrity on the feeding biology of Astyanax altiparanae Garutti & Britski, 2000 in the Ivinhema river basin. Acta Scientiarum. Biological Sciences, 35(4):541-548. doi: 10.4025/actascibiolsci.v35i4.

Viana, L. F, Súarez, Y. R, Cardoso, C. A. L, Solórzano, J. C. J, Crispim, B. D. A, Grisolia, A. B & Lima-Junior, S. E. (2017). Erythrocyte nuclear abnormalities in Astyanax lacustris in response to landscape characteristics in two neotropical streams. Archives of environmental contamination and toxicology, 17(1):1-8. doi: 10.1007/s00244-017-0476-8.

Viana, L. F, Súarez, Y. R, Cardoso, C. . L, Crispim, B. D. A, Cavalcante, D. N. C, Grisolia, A. B & Lima-Junior, S. E. (2018). The Response of Neotropical Fish Species (Brazil) on the Water Pollution: Metal Bioaccumulation and Genotoxicity. Archives of environmental contamination and toxicology, 75(3):476-485. doi: 10.1007/s00244-018-0551-9.

Vieira, T. C, Rodrigues, A. P. C, Amaral, P. M. G, de Oliveira, D. F. C, Gonçalves, R. A, Rodrigues, E, Silva, C, Vasques R. O, Malm, O, Silva-Filho, E. V, Godoy, J. M. O, Machado, W, Filippo, A & Bidone, E. D. (2020). Evaluation of the bioaccumulation kinetics of toxic metals in fish (A. brasiliensis) and its application on monitoring of coastal ecosystems. Mar Pollut Bull, 151:110830. doi: 10.1016/j.marpolbul.2019.110830.

Voigt, C. L, Silva, C. P & Campos, S. X. (2016). Avaliação da bioacumulação de metais em Cyprinus carpio pela interação com sedimento e água de reservatório. Química Nova, 39 (2):180-188. doi: http://dx.doi.org/10.5935/0100-4042.20160014.

Weber, P, Behr, E. R, Knorr, C. L, Vendruscolo, D. S, Flores, E. M. M, Dressler, V. L & Baldisserotto, B. (2013). Metals in the water, sediment, and tissues of two fish species from different trophic levels in a subtropical brazilian river. Microchemical Journal, 106:61-66. doi: https://doi.org/10.1016/j.microc.2012.05.004.

Yi, Y, Yang, Z & Zhang, S. (2011). Ecological risk assessment of heavy metals in sediment and human health risk assessment of heavy metals in fishes in the middle and lower reaches of the Yangtze River basin. Environmental Pollution, 159(10):2575-2585. doi: https://doi.org/10.1016/j.envpol.2011.06.011.

Zhang, H. K, Roy, D, Yan, L, LI, Z, Huang, H, Vermote, E, Skakun, SV & Roger, JC. (2018). Characterization of Sentinel-2A and Landsat-8 top of atmosphere, surface, and nadir BRDF adjusted reflectance and NDVI differences. Remote Sensing of Environment, 215:482-494. doi: 10.1016/j.rse.2018.04.031.

Publicado

15/06/2020

Cómo citar

VIANA, L. F.; FRANCISCO, L. F. V.; CARDOSO, C. A. L.; SOLÓRZANO, J. C. J.; LIMA-JUNIOR, S. E. Evaluación del índice de vegetación y la concentración de metales en sedimentos en la microcuenca Tarumã-Mato Grosso do Sul, Brasil. Research, Society and Development, [S. l.], v. 9, n. 7, p. e806974862, 2020. DOI: 10.33448/rsd-v9i7.4862. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/4862. Acesso em: 30 jun. 2024.

Número

Sección

Ciencias Agrarias y Biológicas