Evaluación de la inestabilidad genómica inducida por inhibidores de la transcriptasa reversa análogos de nucleósidos

Autores/as

DOI:

https://doi.org/10.33448/rsd-v14i5.48710

Palabras clave:

Genotoxicidad; Ensayo cometa; AZT; 3TC.

Resumen

La terapia antirretroviral (TAR) ha mejorado significativamente la calidad y la expectativa de vida de las personas que viven con VIH. Sin embargo, persisten preocupaciones sobre el potencial genotóxico de los inhibidores de la transcriptasa reversa análogos de nucleósidos (ITRNs), especialmente la zidovudina (AZT) y la lamivudina (3TC). Este estudio tuvo como objetivo evaluar los efectos genotóxicos del AZT, del 3TC y de la combinación de ambos (proporción 2:1) en células CHO-K1, utilizando el ensayo cometa en su versión alcalina. Se realizó una investigación cuantitativa de laboratorio. Las células fueron expuestas a concentraciones crecientes de cada fármaco, de forma individual y combinada, durante 24 horas. El daño al ADN se cuantificó como el porcentaje de ADN presente en la cola del cometa. El AZT indujo un aumento significativo del daño al ADN en las dos concentraciones más altas evaluadas (900 y 1350 µM), mientras que el 3TC no mostró efectos genotóxicos en ninguna de las concentraciones probadas. La combinación AZT+3TC causó daños significativos al ADN en las dos dosis más altas en comparación con el control negativo, sin evidencia de interacción sinérgica en relación con el AZT aislado. Estos hallazgos refuerzan la importancia de evaluar la integridad del ADN en los esquemas de TAR. El ensayo cometa demostró ser una herramienta sensible para detectar la genotoxicidad inducida por ITRNs, destacando la necesidad de un monitoreo continuo de las terapias combinadas.

Citas

Bazzoli, C., Jullien, V., & Le Tiec, C. (2010). Intracellular pharmacokinetics of antiretroviral drugs in HIV-infected patients, and their correlation with drug action. Clinical Pharmacokinetics, 49(1), 17–45.

Bbosa, N., Kaleebu, P., & Sssemwanga, D. (2019). Diversidade de subtipos de HIV em todo o mundo. Current Opinion in HIV & AIDS, 14(3), 153–160.

Brochard, T., McIntyre, R. L., Houtkooper, R. H., Seluanov, A., Gorbunova, V., & Janssens, G. E. (2023). Repurposing nucleoside reverse transcriptase inhibitors (NRTIs) to slow aging. Ageing Research Reviews, 92, 102132.

Calabrese, E. J., & Selby, P. B. (2024). Comet assay and hormesis. Environmental Pollution, 341, 122929.

Chen, M. S., & Oshana, S. C. (1987). Inhibition of HIV reverse transcriptase by 2',3'-dideoxynucleoside triphosphates. Biochemical Pharmacology, 36(24), 4361–4362.

Chen, X., Castillo-Mancilla, J. R., Seifert, S. M., McAllister, K. B., Zheng, J. H., Bushman, L. R., MaWhinney, S., & Anderson, P. L. (2016). Analysis of the endogenous deoxynucleoside triphosphate pool in HIV-positive and -negative individuals receiving tenofovir-emtricitabine. Antimicrobial Agents and Chemotherapy, 60(9), 5387–5392.

Collins, A., Moller, P., Gajski, G., et al. (2023). Measuring DNA modifications with the comet assay: A compendium of protocols. Nature Protocols, 18(3), 929–989.

De Clercq, E. (2009). Anti-HIV drugs: 25 compounds approved within 25 years after the discovery of HIV. International Journal of Antimicrobial Agents, 33, 307–320.

Escobar, P. A., Olivero, O. A., Wade, N. A., Abrams, E. J., Nesel, C. J., Ness, R. B., Day, R. D., Day, B. W., Meng, Q., O'Neill, J. P., Walker, D. M., Poirier, M. C., Walker, V. E., & Bigbee, W. L. (2007). Genotoxicity assessed by the comet and GPA assays following in vitro exposure of human lymphoblastoid cells (H9) or perinatal exposure of mother-child pairs to AZT or AZT-3TC. Environmental and Molecular Mutagenesis, 48(3–4), 330–343.

Fernandes, L. D. R., Lopes, J. R., Bonjorno, A. F., Prates, J. L. B., Scarim, C. B., & Dos Santos, J. L. (2023). The application of prodrugs as a tool to enhance the properties of nucleoside reverse transcriptase inhibitors. Viruses, 15(11), 2234.

Frick, L. W., Nelson, D. J., St Clair, M. H., Furman, P. A., & Krenitsky, T. A. (1988). Effects of 3'-azido-3'-deoxythymidine on the deoxynucleotide triphosphate pools of cultured human cells. Biochemical and Biophysical Research Communications, 154(1), 124–129.

Gardner, K., Hall, P. A., Chinnery, P. F., & Payne, B. A. (2014). HIV treatment and associated mitochondrial pathology: Review of 25 years of in vitro, animal, and human studies. Toxicological Pathology, 42(5), 811–822.

Grando, A. C., Guimarães, N. N., de Souza, A. P., Lehmann, M., Cunha, K. S., & Dihl, R. R. (2020). Assessment of complex genomic alterations induced by AZT, 3TC, and the combination AZT + 3TC. Drug and Chemical Toxicology, 43(4), 429–434.

Hashiguchi, K., Bohr, V. A., & de Souza-Pinto, N. C. (2004). Oxidative stress and mitochondrial DNA repair: Implications for NRTIs-induced DNA damage. Mitochondrion, 4(2–3), 215–222.

Holec, A. D., Mandal, S., Prathipati, P. K., & Destache, C. J. (2017). Nucleotide reverse transcriptase inhibitors: A thorough review, present status and future perspective as HIV therapeutics. Current HIV Research, 15(6), 411–421.

Lourenço, E. D., do Amaral, V. S., Lehmann, M., Dihl, R. R., Schmitt, V. M., Cunha, K. S., Reguly, M. L., & de Andrade, H. H. (2010). Micronuclei induced by reverse transcriptase inhibitors in mononucleated and binucleated cells as assessed by the cytokinesis-block micronucleus assay. Genetics and Molecular Biology, 33(4), 756–760.

Maagaard, A., & Kvale, D. (2009). Mitochondrial toxicity in HIV-infected patients. Toxicology, 254(3), 121–129.

Mamber, S. W., Brookshire, K. W., & Forenza, S. (1990). Induction of the SOS response in Escherichia coli by azidothymidine and dideoxynucleosides. Antimicrobial Agents and Chemotherapy, 34(6), 1237–1243.

OECD. (2018). OECD Guidelines for the Testing of Chemicals: 487, In vitro Mammalian Cell Micronucleus Test (p. 1–30). OECD Publishing.

Painter, G. R., Almond, M. R., Mao, S., & Liotta, D. C. (2004). Biochemical and mechanistic basis for the activity of nucleoside analogue inhibitors of HIV reverse transcriptase. Current Topics in Medicinal Chemistry, 4(10), 1035–1044.

Pereira A. S., Shitsuka, D. M., Parreira, F. J., & Shitsuka, R. (2018). Metodologia da pesquisa científica. [free e-book]. Editora UAB/NTE/UFSM.

Schardosim, R. F. C., Cardozo, T. R., de Souza, A. P., Seeber, A., Flores, W. H., Lehmann, M., & Dihl, R. R. (2022). Cyto-genotoxicity of crystalline and amorphous niobium (V) oxide nanoparticles in CHO-K1 cells. Toxicology Research (Cambridge), 11(5), 765–773.

Shitsuka, R., Shitsuka, R. I. C. M., Shitsuka, D. M., & Shitsuka, C. D. W. M. (2014). Matemática fundamental para a tecnologia. Editora Érica.

Sun, Y., & Wang, L. (2024). Development of anti-HIV therapeutics: From conventional drug discovery to cutting-edge technology. Pharmaceuticals, 17, 887.

Tao, K., Zhou, J., Nagarajan, P., Tzou, P. L., & Shafer, R. W. (2024). Comprehensive database of HIV mutations selected during antiretroviral in vitro passage experiments. Antiviral Research, 230, 105988.

Tice, R. R., Agurell, E., Anderson, D., Burlinson, B., Hartmann, A., Kobayashi, H., Miyamae, Y., Rojas, E., Ryu, J. C., & Sasaki, Y. F. (2000). Single cell gel/comet assay: Guidelines for in vitro and in vivo genetic toxicology testing. Environmental and Molecular Mutagenesis, 35(3), 206–221.

Trintinaglia, M., de Souza, A. P., Gonçalves Trindade, M. E., Lehmann, M., Umpierre Conter, F., & Dihl, R. R. (2025, April 17). Assessment of the cytostasis and chromosomal instability potential of myricetin and its chemopreventive effect against bleomycin induced cyto genotoxicity. Journal of Toxicology and Environmental Health, Part A. https://doi.org/10.1080/15287394.

Tripathi, D. N., Pawar, A. A., Vikram, A., Ramarao, P., & Jena, G. B. (2008). Use of the alkaline comet assay for the detection of transplacental genotoxins in newborn mice. Mutation Research, 653(1–2), 134–139.

Tompa, D. R., Immanuel, A., Srikanth, S., & Kadhirvel, S. (2021). Trends and strategies to combat viral infections: A review on FDA approved antiviral drugs. International Journal of Biological Macromolecules, 172, 524–541.

UNAIDS. (2023). AIDS statistics-2018 fact sheet. https://www.unaids.org/en/resources/fact-sheet

Wheeler, L. J., & Mathews, C. K. (2011). Nucleoside triphosphate pool asymmetry in mammalian mitochondria. Journal of Biological Chemistry, 286(19), 16992–16996.

Vieira, S. (2021). Introdução à bioestatística. Editora GEN/Guanabara Koogan.

Wu, Q., Beland, F. A., Chang, C. W., & Fang, J. L. (2013). Role of DNA repair pathways in response to zidovudine-induced DNA damage in immortalized human liver THLE2 cells. International Journal of Biomedical Sciences, 9(1), 18–25.

Descargas

Publicado

01/05/2025

Cómo citar

CORREA, D. K. .; GUIMARÃES, N. N.; GRANDO, A. C.; DIHL, R. R. Evaluación de la inestabilidad genómica inducida por inhibidores de la transcriptasa reversa análogos de nucleósidos. Research, Society and Development, [S. l.], v. 14, n. 5, p. e0214548710, 2025. DOI: 10.33448/rsd-v14i5.48710. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/48710. Acesso em: 22 may. 2025.

Número

Sección

Ciencias de la salud