Evaluación de biocompatibilidad del polímero PCL que cubre la aleación Ti-30Ta
DOI:
https://doi.org/10.33448/rsd-v9i8.5953Palabras clave:
Nanomateriales; Aleación Ti-30Ta; Nanotubos de TiO2; Polímeros biocompatibles; Culturas celulares.Resumen
En los últimos años, se han llevado a cabo varias investigaciones en busca del desarrollo de materiales para aplicaciones biomédicas. Y uno de los objetivos de estos estudios es optimizar el comportamiento de la interfaz material / entorno biológico. Entre los materiales más utilizados se encuentran el titanio y sus aleaciones debido a sus propiedades como la resistencia a la corrosión y la biocompatibilidad. Los estudios han encontrado que el comportamiento celular puede verse influenciado por los cambios en la morfología de la superficie. Por lo tanto, el objetivo de este estudio fue asociar la deposición de fibras poliméricas de PCL con el crecimiento de nanotubos de TiO2 en la superficie de la aleación Ti-30Ta para aplicaciones biomédicas. El proceso de electrohilado se utilizó para la producción de nanofibras de polímero de 200 nm, debido en gran parte al mayor interés en las propiedades y tecnologías a nanoescala. El uso de polímeros biocompatibles para la viabilidad del crecimiento celular es una alternativa prometedora para mejorar la osteointegración. Se utilizaron técnicas de caracterización como la microscopía electrónica de barrido (SEM-FEG) para investigar la superficie de las muestras. Las células madre adultas derivadas del tejido adiposo humano (ADSC) también se utilizaron para estudiar la respuesta celular de estos biomateriales. La viabilidad celular se determinó mediante el ensayo Cell Titer-Blue después de 1 y 7 días. Los resultados indicaron que los cambios en la nanoarquitectura de las características morfológicas de las nanoestructuras en la micro-topografía, pueden ser prometedores en el campo biomédico debido a la modulación de la respuesta celular.
Citas
Capellato, P., Riedel, N. A., Williams, J. D., Machado, J. P. B., Ketul Popat, K. C., & Alves Claro, A. P. R. (2015). Ion bean etching on ti-30ta alloy for biomedical application. In Materials Science Forum (Vol. 805). https://doi.org/10.4028/www.scientific.net/MSF.805.57
Capellato, P., Smith, B. S., Popat, K. C., & Claro, A. P. R. A. (2012). Fibroblast functionality on novel Ti30Ta nanotube array. Materials Science and Engineering C, 32(7). https://doi.org/10.1016/j.msec.2012.05.013
Capellato, Patricia, Escada, A. L. A. A. L. A., Popat, K. C. K. C., & Claro, A. P. R. A. A. P. R. A. (2014). Interaction between mesenchymal stem cells and Ti-30Ta alloy after surface treatment. Journal of Biomedical Materials Research - Part A, 102(7), 2147–2156. https://doi.org/10.1002/jbm.a.34891
Capellato, Patricia, Riedel, N. A., Williams, J. D., Machado, J. P. B., Popat, K. C., & Claro, A. P. R. A. (2013). Surface Modification on Ti-30Ta Alloy for Biomedical Application. Engineering, 05(09), 707–713. https://doi.org/10.4236/eng.2013.59084
Capellato, Patrícia, Silva, G., Popat, K., Simon‐Walker, R., Alves Claro, A. P., & Zavaglia, C. (2020). Cell investigation of Adult Human dermal fibroblasts on PCL nanofibers/TiO 2 nanotubes Ti‐30Ta alloy for biomedical application. Artificial Organs, aor.13713. https://doi.org/10.1111/aor.13713
Devgan, S., & Sidhu, S. S. (2019). Evolution of surface modification trends in bone related biomaterials: A review. Materials Chemistry and Physics, 233, 68–78. https://doi.org/10.1016/j.matchemphys.2019.05.039
Ding, D., Xie, Y., Li, K., Huang, L., & Zheng, X. (2018). Micro/Nano Structural Tantalum Coating for Enhanced Osteogenic Differentiation of Human Bone Marrow Stem Cells. Materials, 11(4), 546. https://doi.org/10.3390/ma11040546
Domingues Goncalves, A., Balestri, W., & Reinwald, Y. (2020). Biomedical Implants for Regenerative Therapies. In Biomaterials [Working Title]. IntechOpen. https://doi.org/10.5772/intechopen.91295
Fan, H., & Guo, Z. (2020). Bioinspired surfaces with wettability: biomolecule adhesion behaviors. Biomaterials Science, 8(6), 1502–1535. https://doi.org/10.1039/c9bm01729a
Gulati, K., Moon, H.-J., Kumar, P. T. S., Han, P., & Ivanovski, S. (2020). Anodized anisotropic titanium surfaces for enhanced guidance of gingival fibroblasts. Materials Science and Engineering: C, 110860. https://doi.org/10.1016/j.msec.2020.110860
Jawed, A., Saxena, V., & Pandey, L. M. (2020). Engineered nanomaterials and their surface functionalization for the removal of heavy metals: A review. In Journal of Water Process Engineering (Vol. 33, p. 101009). Elsevier Ltd. https://doi.org/10.1016/j.jwpe.2019.101009
Liu, Y., Rath, B., Tingart, M., & Eschweiler, J. (2020). Role of implants surface modification in osseointegration: A systematic review. Journal of Biomedical Materials Research Part A, 108(3), 470–484. https://doi.org/10.1002/jbm.a.36829
Miyazaki, T., Kim, H. M., Kokubo, T., Ohtsuki, C., Kato, H., & Nakamura, T. (2002). Mechanism of bonelike apatite formation on bioactive tantalum metal in a simulated body fluid. Biomaterials, 23(3), 827–832. https://doi.org/10.1016/S0142-9612(01)00188-0
Pham, Q. P., Sharma, U., & Mikos, A. G. (2006). Electrospinning of Polymeric Nanofibers for Tissue Engineering Applications: A Review. Tissue Engineering, 12(5), 1197–1211. https://doi.org/10.1089/ten.2006.12.1197
Ravichandran, R., Ng, C. C. H., Liao, S., Pliszka, D., Raghunath, M., Ramakrishna, S., & Chan, C. K. (2012). Biomimetic surface modification of titanium surfaces for early cell capture by advanced electrospinning. Biomedical Materials, 7(1). https://doi.org/10.1088/1748-6041/7/1/015001
Souza, M. A., Carobolante, J. P. A., Almeida, R. dos S., d’Ávila, M. A., Walker, R. S., Popat, K. C., & Claro, A. P. R. A. (2017). Immobilisation of apatite on Ti30Ta alloy surface by electrospinning of PCL. Surface Innovations, 5(2), 68–74. https://doi.org/10.1680/jsuin.16.00011
Trillo, E. A., Ortiz, C., Dickerson, P., Villa, R., Stafford, S. W., & Murr, L. E. (2001). Evaluation of mechanical and corrosion biocompatibility of TiTa alloys. Journal of Materials Science: Materials in Medicine, 12(4), 283–292. https://doi.org/10.1023/A:1011210101895
Verma, R. P. (2020). Materials Today : Proceedings Titanium based biomaterial for bone implants : A mini review. Materials Today: Proceedings, xxxx, 2–5. https://doi.org/10.1016/j.matpr.2020.02.649
Walker, P. R., LeBlanc, J., & Sikorska, M. (1989). Effects of aluminum and other cations on the structure of brain and liver chromatin. Biochemistry, 28(9), 3911–3915. https://doi.org/10.1021/bi00435a043
Zhou, Y. L., Niinomi, M., Akahori, T., Fukui, H., & Toda, H. (2005). Corrosion resistance and biocompatibility of Ti-Ta alloys for biomedical applications. Materials Science and Engineering A, 398(1–2), 28–36. https://doi.org/10.1016/j.msea.2005.03.032
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2020 Patrícia Capellato, Gilbert Silva, Maria Ranieri, Mirian Melo, Daniela Sachs, Cecilia Zavaglia, Ana Claro
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Los autores que publican en esta revista concuerdan con los siguientes términos:
1) Los autores mantienen los derechos de autor y conceden a la revista el derecho de primera publicación, con el trabajo simultáneamente licenciado bajo la Licencia Creative Commons Attribution que permite el compartir el trabajo con reconocimiento de la autoría y publicación inicial en esta revista.
2) Los autores tienen autorización para asumir contratos adicionales por separado, para distribución no exclusiva de la versión del trabajo publicada en esta revista (por ejemplo, publicar en repositorio institucional o como capítulo de libro), con reconocimiento de autoría y publicación inicial en esta revista.
3) Los autores tienen permiso y son estimulados a publicar y distribuir su trabajo en línea (por ejemplo, en repositorios institucionales o en su página personal) a cualquier punto antes o durante el proceso editorial, ya que esto puede generar cambios productivos, así como aumentar el impacto y la cita del trabajo publicado.