Bioconservación de alimentos utilizando antimicrobianos de bacterias ácido lácticas

Autores/as

DOI:

https://doi.org/10.33448/rsd-v9i8.6666

Palabras clave:

Bacteriocinas; Conservación; Probióticos.

Resumen

Existe una creciente demanda de los consumidores de alimentos naturales, y es de gran interés desarrollar y producir sustancias naturales y efectivas para la conservación de alimentos, que reemplacen a los conservantes sintéticos. El crecimiento de bacterias puede ocurrir en los alimentos debido a las condiciones ambientales durante la manipulación y el almacenamiento, incluso si se han observado buenas prácticas de fabricación. Esto puede causar pérdidas para la industria, y también convertirse en un riesgo de contaminación para el consumidor, con la necesidad de desarrollar nuevas técnicas para controlar estas fuentes de contaminación. Las bacterias del ácido láctico son conocidas por sus beneficios para los organismos de quienes las consumen y por su capacidad para producir, en condiciones apropiadas, compuestos antimicrobianos naturales, que pueden usarse como bioconservadores en los alimentos y contribuyen al aumento de la vida útil de los productos. Las bacteriocinas son proteínas o péptidos producidos en los ribosomas que tienen la capacidad de actuar contra ciertos patógenos, evitando su multiplicación en productos durante los períodos de almacenamiento y distribución. El propósito de esta revisión es presentar los principales microorganismos productores de bacteriocinas, las formas de producción, así como las técnicas por las cuales estos bioproductos se han aplicado en la bioconservación de productos alimenticios y los resultados obtenidos. La biopreservación con bacteriocinas se ha estudiado y establecido como un método nuevo e importante, sin embargo, es necesario buscar procesos de producción de estas bacteriocinas a mayor escala y con reducción de costos, de modo que su potencial pueda ser explorado cada vez más por la ciencia y la industria. Los estudios relacionados con los mecanismos de acción y las aplicaciones en los alimentos también son necesarios para apoyar las decisiones de las agencias reguladoras.

Citas

Aasen, I. M., Moretro, T., Katla, T., Axelsson, L., & Storro, I. (2000). Influence of complex nutrients, temperature and pH on bacteriocin production by Lactobacillus sakei CCUG 42687. Applied Microbiology and Biotechnology, 53(2), 159-166.

Ahmad, V., Khan, M. S., Jamal, Q. M. S., Alzohairy, M. A., Al Karaawi, M. A., & Siddiqui, M. U. (2017). Antimicrobial potential of bacteriocins: In therapy, agriculture and food preservation. International Journal of Antimicrobial Agents, 49(1), 1-11.

Alvarez-Sieiro, P., Montalbán-López, M., Mu, D., & Kuipers, O. P. (2016). Bacteriocins of lactic acid bacteria: Extending the family. Applied Microbiology and Biotechnology, 100(7), 2939-2951.

Angiolillo, L., Conte, A., & Del Nobile, M. A. (2018). A new method to bio-preserve sea bass fillets. International Journal of Food Microbiology, 271, 60-66.

Azevedo, P. O. D. S., Azevedo, H. F., Figueroa, E., Converti, A., Domínguez, J. M., & Souza Oliveira, R. P. (2019). Effects of pH and sugar supplements on bacteriocin-like inhibitory substance production by Pediococcus pentosaceus. Molecular Biology Reports, 46(5), 4883-4891.

Barbosa, M. S., Todorov, S. D., Jurkiewicz, C. H., & Franco, B. D. (2015). Bacteriocin production by Lactobacillus curvatus MBSa2 entrapped in calcium alginate during ripening of salami for control of Listeria monocytogenes. Food Control, 47, 147-153.

Barbosa, M. S., Jurkiewicz, C., Landgraf, M., Todorov, S. D., & Franco, B. D. G. D. M. (2018). Effect of proteins, glucose and NaCl on growth, biosynthesis and functionality of bacteriocins of Lactobacillus sakei subsp. sakei 2a in foods during storage at 4°C: Tests in food models. LWT - Food Science and Technology, 95, 167-171.

Barman, S., Ghosh, R., & Mandal, N. C. (2018). Production optimization of broad spectrum bacteriocin of three strains of Lactococcus lactis isolated from homemade buttermilk. Annals of Agrarian Science, 16(3), 286-296.

Biscola, V., Abriouel, H., Todorov, S. D., Capuano, V. S. A. C., Gálvez, A., & Franco, B. D. G. F. (2014). Effect of autochthonous bacteriocin-producing Lactococcus lactis on bacterial population dynamics and growth of halotolerant bacteria in Brazilian charqui. Food Microbiology, 44, 296-301.

Cavera, V. L., Arthur, T. D., Kashtanov, D., & Chikindas, M. L. (2015). Bacteriocins and their position in the next wave of conventional antibiotics. International Journal of Antimicrobial Agents, 46(5), 494-501.

Champagne, C. P., Cruz, A. G., & Daga, M. (2018). Strategies to improve the functionality of probiotics in supplements and foods. Current Opinion in Food Science, 22, 160-166.

Chikindas, M. L., Weeks, R., Drider, D., Chistyakov, V. A., & Dicks, L. M. (2018). Functions and emerging applications of bacteriocins. Current Opinion in Biotechnology, 49, 23-28.

Chugh, B., & Kamal-Eldin, A. (2020). Bioactive compounds produced by probiotics in food products. Current Opinion in Food Science, 32, 76-82.

Cruz, A. G., Buriti, F. C. A., Souza, C. H. B., Faria, J. A. F., & Saad, S. M. I. (2009). Probiotic cheese: Health benefits, technological and stability aspects. Trends in Food Science & Technology, 20(8), 344-354.

EFSA - European Food Safety Authority. 2018. Current EU approved additives and their E Numbers (2018). Accessed 2 October 2018. Available at

https://www.food.gov.uk/business-guidance/eu-approved-additives-and-e-numbers.

Elayaraja, S., Annamalai, N., Mayavu, P., & Balasubramanian, T. (2014). Production, purification and characterization of bacteriocin from Lactobacillus murinus AU06 and its broad antibacterial spectrum. Asian Pacific Journal of Tropical Biomedicine, 4, S305-S311.

Engelhardt, T., Szakmar, K., Kisko, G., Mohacsi-Farkas, C., & Reichart, O. (2018). Combined effect of NaCl and low temperature on antilisterial bacteriocin production of Lactobacillus plantarum ST202Ch. LWT - Food Science and Technology, 89, 104-109.

Fernandez, B., Vimont, A., Desfossés-Foucault, É., Daga, M., Arora, G., & Fliss, I. (2017). Antifungal activity of lactic and propionic acid bacteria and their potential as protective culture in cottage cheese. Food Control, 78, 350-356.

Field, D., Ross, R. P., & Hill, C. (2018). Developing bacteriocins of lactic acid bacteria into next generation biopreservatives. Current Opinion in Food Science, 20, 1-6.

Fu, Y., Sarkar, P., Bhunia, A. K., & Yao, Y. (2016). Delivery systems of antimicrobial compounds to food. Trends in Food Science & Technology, 57, 165-177.

Garnier, L., Valence, F., Pawtowski, A., Auhustsinava-Galerne, L., Frotté, N., Baroncelli, R., & Mounier, J. (2017). Diversity of spoilage fungi associated with various French dairy products. International Journal of Food Microbiology, 241, 191-197.

Goh, K. K., Liu, Y. W., Kuo, P. H., Chung, Y. C. E., Lu, M. L., & Chen, C. H. (2019). Effect of probiotics on depressive symptoms: A meta-analysis of human studies. Psychiatry Research, 282, 112568.

Gómez-Sala, B., Herranz, C., Díaz-Freitas, B., Hernández, P. E., Sala, A., & Cintas, L. M. (2016). Strategies to increase the hygienic and economic value of fresh fish: Biopreservation using lactic acid bacteria of marine origin. International Journal of Food Microbiology, 223, 41-49.

Hagiwara, A., Imai, N., Nakashima, H., Toda, Y., Kawabe, M., Furukawa, F., Delves-Broughton, J., Yasuhara, K., & Hayashi S. (2010). A 90-day oral toxicity study of nisin A, an anti-microbial peptide derived from Lactococcus lactis subsp. lactis, in F344 rats. Food and Chemical Toxicology, 48, 2421-2428.

Hancock, R. E., & Sahl, H. G. (2006). Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nature Biotechnology, 24(12), 1551-1557.

Hossain, M. I., Sadekuzzaman, M., & Ha, S. D. (2017). Probiotics as potential alternative biocontrol agents in the agriculture and food industries: A review. Food Research International, 100, 63-73.

Jurado, M., & Ruiz-Navarro, P. (2018). Effects of fungal growth on the firmness of a cheese analogue formulated with different casein-to-fat ratios. LWT - Food Science and Technology, 90, 145-151.

Juturu, V., & Wu, J. C. (2018). Microbial production of bacteriocins: Latest research development and applications. Biotechnology Advances, 36(8), 2187-2200.

Kaletta, C., & Entian, K. D. (1989). Nisin, a peptide antibiotic: Cloning and sequencing of the nisA gene and posttranslational processing of its peptide product. Journal of Bacteriology, 171, 1597-1601.

Katharopoulos, E., Touloupi, K., & Touraki, M. (2016). Monitoring of multiple bacteriocins through a developed dual extraction protocol and comparison of HPLC-DAD with turbidometry as their quantification system. Journal of Microbiological Methods, 127, 123-131.

Kumariya, R., Garsa, A. K., Rajput, Y. S., Sood, S. K., Akhtar, N., & Patel, S. (2019). Bacteriocins: Classification, synthesis, mechanism of action and resistance development in food spoilage causing bacteria. Microbial Pathogenesis, 128, 171-177.

Kwaadsteniet, M., Ten Doeschate, K., & Dicks, L. M. (2008). Characterization of the structural gene encoding nisin F, a new lantibiotic produced by a Lactococcus lactis subsp. lactis isolate from freshwater catfish (Clarias gariepinus). Applied and Environmental Microbiology, 74, 547-549.

Langa, S., Martín-Cabrejas, I., Montiel, R., Peirotén, Á., Arqués, J. L., & Medina, M. (2018). Protective effect of reuterin-producing Lactobacillus reuteri against Listeria monocytogenes and Escherichia coli O157: H7 in semi-hard cheese. Food Control, 84, 284-289.

Le Lay, C., Coton, E., Le Blay, G., Chobert, J. M., Haertlé, T., Choiset, Y., & Mounier, J. (2016a). Identification and quantification of antifungal compounds produced by lactic acid bacteria and propionibacteria. International Journal of Food Microbiology, 239, 79-85.

Le Lay, C., Dridi, L., Bergeron, M. G., & Ouellette, M. (2016b). Nisin is an effective inhibitor of Clostridium difficile vegetative cells and spore germination. Journal of Medical Microbiology, 65(2), 169-175.

Leggieri, M. C., Decontardi, S., Bertuzzi, T., Pietri, A., & Battilani, P. (2017). Modeling growth and toxin production of toxigenic fungi signaled in cheese under different temperature and water activity regimes. Toxins, 9(1), 4.

Levinskas, G. J., Ribelin, W. E., & Shaffer, C. B. (1966). Acute and chronic toxicity of pimaricin. Toxicology and Applied Pharmacology, 8, 97-109.

Li, J., Yang, X., Shi, G., Chang, J., Liu, Z., & Zeng, M. (2019). Cooperation of lactic acid bacteria regulated by the AI-2/LuxS system involve in the biopreservation of refrigerated shrimp. Food Research International, 120, 679-687.

Lima, E. D. L. C., Moura Fernandes, J., & Cardarelli, H. R. (2017). Optimized fermentation of goat cheese whey with Lactococcus lactis for production of antilisterial bacteriocin-like substances. LWT - Food Science and Technology, 84, 710-716.

Lv, X., Du, J., Jie, Y., Zhang, B., Bai, F., Zhao, H., & Li, J. (2017). Purification and antibacterial mechanism of fish-borne bacteriocin and its application in shrimp (Penaeus vannamei) for inhibiting Vibrio parahaemolyticus. World Journal of Microbiology and Biotechnology, 33(8), 156.

Martínez, B., García, P., & Rodríguez, A. (2019). Swapping the roles of bacteriocins and bacteriophages in food biotechnology. Current Opinion in Biotechnology, 56, 1-6.

McManamon, O., Kaupper, T., Scollard, J., & Schmalenberger, A. (2019). Nisin application delays growth of Listeria monocytogenes on fresh-cut iceberg lettuce in modified atmosphere packaging, while the bacterial community structure changes within one week of storage. Postharvest Biology and Technology, 147, 185-195.

Menousek, J., Mishra, B., Hanke, M. L., Heim, C. E., Kielian, T., & Wang, G. (2012). Database screening and in vivo efficacy of antimicrobial peptides against methicillin-resistant Staphylococcus aureus USA300. International Journal of Antimicrobial Agents, 39(5), 402-406.

Miao, J., Xu, M., Guo, H., He, L., Gao, X., DiMarco-Crook, C., & Cao, Y. (2015). Optimization of culture conditions for the production of antimicrobial substances by probiotic Lactobacillus paracasei subsp. tolerans FX-6. Journal of Functional Foods, 18, 244-253.

Mills, S., Ross, R. P., & Hill, C. (2017). Bacteriocins and bacteriophage; a narrow-minded approach to food and gut microbiology. FEMS Microbiology Reviews, 41, S129-S153.

Mir, S. A., Shah, M. A., Mir, M. M., Dar, B. N., Greiner, R., & Roohinejad, S. (2018). Microbiological contamination of ready-to-eat vegetable salads in developing countries and potential solutions in the supply chain to control microbial pathogens. Food Control, 85, 235-244.

Misra, N. N., Koubaa, M., Roohinejad, S., Juliano, P., Alpas, H., Inácio, R. S., Saraiva, J. A., & Barba, F. J. (2017). Landmarks in the historical development of twenty first century food processing technologies. Food Research International, 97, 318-339.

Moraes, G. M. D., Santos, K. M. O., Barcelos, S. C., Lopes, S. A., & Egito, A. S. (2018). Potentially probiotic goat cheese produced with autochthonous adjunct culture of Lactobacillus mucosae: Microbiological, physicochemical and sensory attributes. LWT - Food Science and Technology, 94, 57-63.

Mukhopadhyay, S., & Ukuku, D. O. (2018). The role of emerging technologies to ensure the microbial safety of fresh produce, milk and eggs. Current Opinion in Food Science, 19, 145-154.

Mulders, J. W., Boerrigter, I. J., Rollema, H. S., Siezen, R. J., & Vos, W. M. (1991). Identification and characterization of the lantibiotic nisin Z, a natural nisin variant. European Journal of Biochemistry, 201, 581-584.

Mushtaq, M., Gani, A., Masoodi, F. A., & Ahmad, M. (2016). Himalayan cheese (Kalari/Kradi) – Effect of different probiotic strains on oxidative stability, microbiological, sensory and nutraceutical properties during storage. LWT - Food Science and Technology, 67, 74-81.

O’Connor, P. M., Kuniyoshi, T. M., Oliveira, R. P., Hill, C., Ross, R. P., & Cotter, P. D. (2020). Antimicrobials for food and feed; a bacteriocin perspective. Current Opinion in Biotechnology, 61, 160-167.

O’Connor, P. M., O’Shea, E. F., Guinane, C. M., O’Sullivan, O., Cotter, P. D., Ross, R. P., & Hill, C. (2015). Nisin H is a new nisin variant produced by the gut-derived strain Streptococcus hyointestinalis DPC6484. Applied and Environmental Microbiology, 81(12), 3953-3960.

O’Connor, P. M., Ross, R. P., Hill, C., & Cotter, P. D. (2015). Antimicrobial antagonists against food pathogens: A bacteriocin perspective. Current Opinion in Food Science, 2, 51-57.

Oliveira, M. E. G., Garcia, E. F., Oliveira, C. E. V., Gomes, A. M. P., Pintado, M. M. E., Madureira, A. R. M. F., & Souza, E. L. (2014). Addition of probiotic bacteria in a semi-hard goat cheese (coalho): Survival to simulated gastrointestinal conditions and inhibitory effect against pathogenic bacteria. Food Research International, 64, 241-247.

Pei, J., Jin, W., El-Aty, A. A., Baranenko, D. A., Gou, X., Zhang, H., & Yue, T. (2020). Isolation, purification, and structural identification of a new bacteriocin made by Lactobacillus plantarum found in conventional kombucha. Food Control, 110, 106923.

Piper, C., Hill, C., Cotter, P. D., & Ross, R. P. (2011). Bioengineering of a nisin A-producing Lactococcus lactis to create isogenic strains producing the natural variants nisin F, Q and Z. Microbial Biotechnology, 4(3), 375-382.

Prabhurajeshwar, C., & Chandrakanth, R. K. (2017). Probiotic potential of Lactobacilli with antagonistic activity against pathogenic strains: An in vitro validation for the production of inhibitory substances. Biomedical Journal, 40(5), 270-283.

Qiao, X., Du, R., Wang, Y., Han, Y., & Zhou, Z. (2020). Purification, characterization and mode of action of enterocin, a novel bacteriocin produced by Enterococcus faecium TJUQ1. International Journal of Biological Macromolecules, 144, 151-159.

Radaic, A., de Jesus, M. B., & Kapila, Y. L. (2020). Bacterial anti-microbial peptides and nano-sized drug delivery systems: The state of the art toward improved bacteriocins. Journal of Controlled Release, 321, 100-118.

Ramos, B., Brandão, T. R., Teixeira, P., & Silva, C. L. (2020). Biopreservation approaches to reduce Listeria monocytogenes in fresh vegetables. Food Microbiology, 85, 103282.

Reddy, K. V. R., Gupta, S. M., & Aranha, C. (2011). Effect of antimicrobial peptide, nisin, on the reproductive functions of rats. International Scholarly Research Notices, 2011, 828736.

Reihani, S. F. S., & Khosravi-Darani, K. (2019). Influencing factors on single-cell protein production by submerged fermentation: A review. Electronic Journal of Biotechnology, 37, 34-40.

Rivas, F. P., Castro, M. P., Vallejo, M., Marguet, E., & Campos, C. A. (2014). Sakacin Q produced by Lactobacillus curvatus ACU-1: Functionality characterization and antilisterial activity on cooked meat surface. Meat Science, 97(4), 475-479.

Rolim, F. R. L., Santos, K. M. O., Barcelos, S. C., Egito, A. S., Ribeiro, T. S., Conceição, M. L., & Egypto, R. D. C. R. (2015). Survival of Lactobacillus rhamnosus EM1107 in simulated gastrointestinal conditions and its inhibitory effect against pathogenic bacteria in semi-hard goat cheese. LWT - Food Science and Technology, 63(2), 807-813.

Sabo, S. S., Pérez-Rodríguez, N., Domínguez, J. M., & Oliveira, R. P. S. (2017). Inhibitory substances production by Lactobacillus plantarum ST16Pa cultured in hydrolyzed cheese whey supplemented with soybean flour and their antimicrobial efficiency as biopreservatives on fresh chicken meat. Food Research International, 99, 762-769.

Schelegueda, L. I., Vallejo, M., Gliemmo, M. F., Marguet, E. R., & Campos, C. A. (2015). Synergistic antimicrobial action and potential application for fish preservation of a bacteriocin produced by Enterococcus mundtii isolated from Odontesthes platensis. LWT - Food Science and Technology, 64(2), 794-801.

Sharma, K. M., Kumar, R., Panwar, S., & Kumar, A. (2017). Microbial alkaline proteases: Optimization of production parameters and their properties. Journal of Genetic Engineering and Biotechnology, 15(1), 115-126.

Shirazinejad, A. R., Noryati, I., Rosma, A., & Darah, I. (2010). Inhibitory effect of lactic acid and nisin on bacterial spoilage of chilled shrimp. International Journal of Bioengineering and Life Sciences, 4(5), 242-246.

Shori, A. B. (2016). Influence of food matrix on the viability of probiotic bacteria: A review based on dairy and non-dairy beverages. Food Bioscience, 13, 1-8.

Sidhu, P. K., & Nehra, K. (2019). Bacteriocin-nanoconjugates as emerging compounds for enhancing antimicrobial activity of bacteriocins. Journal of King Saud University - Science, 31(4), 758-767.

Singh, N. P., Tiwari, A., Bansal, A., Thakur, S., Sharma, G., & Gabrani, R. (2015). Genome level analysis of bacteriocins of lactic acid bacteria. Computational Biology and Chemistry, 56, 1-6.

Singh, R. S., Chauhan, K., & Kennedy, J. F. (2017). A panorama of bacterial inulinases: Production, purification, characterization and industrial applications. International Journal of Biological Macromolecules, 96, 312-322.

Sivamaruthi, B. S., Fern, L. A., Hj, D. S. N. R. P., & Chaiyasut, C. (2020). The influence of probiotics on bile acids in diseases and aging. Biomedicine & Pharmacotherapy, 128, 110310.

Skariyachan, S., & Govindarajan, S. (2019). Biopreservation potential of antimicrobial protein producing Pediococcus spp. towards selected food samples in comparison with chemical preservatives. International Journal of Food Microbiology, 291, 189-196.

Struyk, A. P., Hoette, I., Drost, G., Waisvisz, J. M., Van Eek, T., & Hoogerheide, J. C. (1958). Pimaricin, a new antifungal antibiotic. Antibiotics Annual, 5, 878-885.

Sudalayandi, K. (2011). Efficacy of lactic acid bacteria in the reduction of trimethylamine-nitrogen and related spoilage derivatives of fresh Indian mackerel fish chunks. African Journal of Biotechnology, 10(1), 42-47.

Sun, Z., Wang, X., Zhang, X., Wu, H., Zou, Y., Li, P., Sun, C., Xu, W., Liu, F., & Wang, D. (2018). Class III bacteriocin helveticin-M causes sublethal damage on target cells through impairment of cell wall and membrane. Journal of Industrial Microbiology & Biotechnology, 45(3), 213-227.

Trabelsi, I., Slima, S. B., Ktari, N., Triki, M., Abdehedi, R., Abaza, W., & Salah, R. B. (2019). Incorporation of probiotic strain in raw minced beef meat: Study of textural modification, lipid and protein oxidation and color parameters during refrigerated storage. Meat Science, 154, 29-36.

Uroić, K., Novak, J., Hynönen, U., Pietilä, T. E., Pavunc, A. L., Kant, R., & Šušković, J. (2016). The role of S-layer in adhesive and immunomodulating properties of probiotic starter culture Lactobacillus brevis D6 isolated from artisanal smoked fresh cheese. LWT - Food Science and Technology, 69, 623-632.

Varsha, K. K., & Nampoothiri, K. M. (2016). Appraisal of lactic acid bacteria as protective cultures. Food Control, 69, 61-64.

Vera, E. C. S., Azevedo, P. O. D. S., Domínguez, J. M., & Oliveira, R. P. S. (2018). Optimization of biosurfactant and bacteriocin-like inhibitory substance (BLIS) production by Lactococcus lactis CECT-4434 from agroindustrial waste. Biochemical Engineering Journal, 133, 168-178.

Verluyten, J., Leroy, F., & De Vuyst, L. (2004). Influence of complex nutrient source on growth of and curvacin A production by sausage isolate Lactobacillus curvatus LTH 1174. Applied and Environmental Microbiology, 70(9), 5081-5088.

Vila-Farres, X., De La Maria, C. G., López-Rojas, R., Pachón, J., Giralt, E., & Vila, J. (2012). In vitro activity of several antimicrobial peptides against colistin-susceptible and colistin-resistant Acinetobacter baumannii. Clinical Microbiology and Infection, 18(4), 383-387.

Wang, C., Cui, Y., & Qu, X. (2020). Optimization of electrotransformation (ETF) conditions in lactic acid bacteria (LAB). Journal of Microbiological Methods, 105944.

Wang, J., Zhang, S., Ouyang, Y., & Li, R. (2019). Current developments of bacteriocins, screening methods and their application in aquaculture and aquatic products. Biocatalysis and Agricultural Biotechnology, 101395.

Wang, X., Ren, H., Wang, W., & Xie, Z. J. (2016). Effects of a starter culture on histamine reduction, nitrite depletion and oxidative stability of fermented sausages. Journal of Food Safety, 36(2), 195-202.

Wirawan, R. E., Klesse, N. A., Jack, R. W., & Tagg, J. R. (2006). Molecular and genetic characterization of a novel nisin variant produced by Streptococcus uberis. Applied and Environmental Microbiology, 72(2), 1148-1156.

Wong, F. W. F., Ariff, A. B., Abbasiliasi, S., & Stuckey, D. C. (2017). Recovery of a bacteriocin-like inhibitory substance from Pediococcus acidilactici Kp10 using surfactant precipitation. Food Chemistry, 232, 245-252.

Woraprayote, W., Pumpuang, L., Tosukhowong, A., Zendo, T., Sonomoto, K., Benjakul, S., & Visessanguan, W. (2018). Antimicrobial biodegradable food packaging impregnated with bacteriocin 7293 for control of pathogenic bacteria in pangasius fish fillets. LWT - Food Science and Technology, 89, 427-433.

Wu, G., Li, X., Fan, X., Wu, H., Wang, S., Shen, Z., & Xi, T. (2011). The activity of antimicrobial peptide S-thanatin is independent on multidrug-resistant spectrum of bacteria. Peptides, 32(6), 1139-1145.

Yi, L., Qi, T., Ma, J., & Zeng, K. (2020). Genome and metabolites analysis reveal insights into control of foodborne pathogens in fresh-cut fruits by Lactobacillus pentosus MS031 isolated from Chinese Sichuan Paocai. Postharvest Biology and Technology, 164, 111150.

Zendo, T., Fukao, M., Ueda, K., Higuchi, T., Nakayama, J., & Sonomoto, K. (2003). Identification of the lantibiotic nisin Q, a new natural nisin variant produced by Lactococcus lactis 61-14 isolated from a river in Japan. Bioscience, Biotechnology and Biochemistry, 67(7), 1616-1619.

Zheng, X., Liu, F., Shi, X., Wang, B., Li, K., Li, B., & Zhuge, B. (2018). Dynamic correlations between microbiota succession and flavor development involved in the ripening of Kazak artisanal cheese. Food Research International, 105, 733-742.

Zou, J., Jiang, H., Cheng, H., Fang, J., & Huang, G. (2018). Strategies for screening, purification and characterization of bacteriocins. International Journal of Biological Macromolecules, 117, 781-789.

Descargas

Publicado

06/08/2020

Cómo citar

STRACK, L.; CARLI, R. C.; SILVA, R. V. da; SARTOR, K. B.; COLLA, L. M.; REINEHR, C. O. Bioconservación de alimentos utilizando antimicrobianos de bacterias ácido lácticas. Research, Society and Development, [S. l.], v. 9, n. 8, p. e998986666, 2020. DOI: 10.33448/rsd-v9i8.6666. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/6666. Acesso em: 19 jul. 2024.

Número

Sección

Revisiones