Potencial energético de los residuos de madera de un bosque tropical urbano
DOI:
https://doi.org/10.33448/rsd-v9i9.7478Palabras clave:
Biomasa; Bioenergía; Residuos de madera de la silvicultura urbana; Caracterización de la madera; Sustentabilidad.Resumen
Las especies de bosques tropicales urbanos generan grandes cantidades de desechos de madera mediante la poda y eliminación de árboles urbanos, una fuente de biomasa accessible que podría utilizarse para generar energía en lugar de eliminarse de forma irregular. El objetivo de este estudio fue determinar el potencial de producción de energía de siete especies más utilizadas en la silvicultura urbana en el estado de São Paulo, Brasil, al evaluar las características físicas, químicas y energéticas de los residuos de madera para y evaluar la reducción de la huella de carbono de la reutilización. energía de este material. Se recolectaron residuos de madera urbana de 7 especies en la ciudad de Piracicaba, y caracterizados físicamente (humedad, densidad básica y densidad aparente), químicamente (contenido de extracto, materiales volátiles, contenido de carbono fijo y cenizas) y energéticamente (mayor, menor, poder calorífico útil, densidad análisis energético y termogravimétrico). El mayor valor de densidad básica se encontró en la especie Cenostigma pluviosum (653,76 kg / m³), todas las especies tenían una poder calorífico superior a 19 MJ / kg y la densidad energética de las especies variaba entre 4,45 a 10,80 GJ / m³. El uso de estos residuos de madera para combustión directa es una alternativa viable y puede considerarse como una solución para reemplazar la incorrecta disposición, que sigue siendo una práctica común en muchas ciudades de países en desarrollo.
Citas
Alvares, C. A., Stape, J. L., Sentelhas, P. C., Gonçalves, J. L. M., Sparovek, G. (2013). Köppen’s climate classification map for Brazil. Meteorologische Zeitschrift, 22(6), 711–728.
Associação Brasileira de Normas Técnicas. ABNT. (1984). NBR 8633: Charcoal - Determination of calorific value.
Associação Brasileira de Normas Técnicas. ABNT. (2010). NBR 14853: Madeira -Determinação do material solúvel em etanol-tolueno, em diclorometano e em acetona.
Antwi-Boasiako, C., & Acheampong, B. B. (2016). Biomass and Bioenergy Strength properties and calori fi c values of sawdust-briquettes as wood-residue energy generation source from tropical hardwoods of different densities. Biomass and Bioenergy, 85, 144–152. doi: 10.1016/j.biombioe.2015.12.006
Araújo, Y. R. V., de Góis, M. L., Junior, L. M. C., & Carvalho, M. (2018). Carbon footprint associated with four disposal scenarios for urban pruning waste. Environmental Science and Pollution Research, 25(2), 1863–1868. doi: 10.1007/s11356-017-0613-y
Arias, B., Pevida, C., Fermoso, J., Plaza, M. G., Rubiera, F., & Pis, J. J. (2008). Influence of torrefaction on the grindability and reactivity of woody biomass. Fuel Processing Technology,
American Society for Testing and Materials. ASTM. (1984). D1762-84: Standard Test Method for Chemical Analysis of Wood Charcoal 84 (Reapproved 2001), 2–3. doi: 10.1520/D1762-84R13.2
American Society for Testing and Materials. ASTM. (2016). D4442 (1983): Standard test methods for moisture content of wood. Annual Book of ASTM Standards, 431–445. doi: 10.1520/D4442-16
American Society for Testing and Materials. ASTM. (2017). D2395-17: Standard Test Methods for Density and Specific Gravity (Relative Density) of Wood and Wood-Based Materials. Annual Book of ASTM Standards, 1–13. doi: 10.1520/D2395-17.2
American Society for Testing and Materials. ASTM. (2019). D6683: Standard Test Method for Measuring Bulk Density Values of Powders and Other Bulk Solids as Function of Compressive Stress. Annual Book of ASTM Standards, 6–9. doi: 10.1520/D6683-14.2
American Society for Testing and Materials. ASTM. (2019). E870-82: Standard Test Methods for Analysis of Wood Fuels. Book of Standards Volume: 05.06. doi: 10.1520/E0870-82R19
Boumanchar, I., Chhiti, Y., Ezzahrae, F., Alaoui, M., & Elkhouakhi, M. (2019). Investigation of (co)-combustion kinetics of biomass, coal and municipal solid wastes. Waste Management, 97, 10–18. doi: 10.1016/j.wasman.2019.07.033
Brand, M. A. (2010). Energia de biomassa florestal. Interciência, 131.
Brand, M. A., & Jacinto, R. C. (2020). Apple pruning residues: Potential for burning in boiler systems and pellet production. Renewable Energy, 152, 458–466. doi: 10.1016/j.renene.2020.01.037
Brasil. (2010) Política Nacional de Resíduos Sólidos. Lei n° 12.305, 2 de agosto de 2010. Presidência da República, Departamento da Casa Civil. Brasília.
Brun, E. J., Bersch, A. P., Pereira, F. A., Agostinho Silva, D., Barba, Y. R. de, & Dorini Júnior, J. R. (2018). Characterization energy of wood of three genetic materials of Eucalyptus sp. Floresta, 48, 87–92. doi: 10.5380/rf.v48
Carvalho, A. (1996). Madeiras Portuguesas - Estrutura Anatômica, Propriedades, Utilizações. (Vol I).
Castro, A. F. N. M., Carneiro, A. C. O., Castro, R. V. O., Cavalcante dos Santos, R., Ferreira, L. P., Damásio, R. A. P., & Vital, B. R. (2013). Potencial energético da madeira de eucalipto. Revista Da Madeira, 137.
Cereceda-Balic, F., Toledo, M., Vidal, V., Guerrero, F., Diaz-robles, L. A., Petit-Breuilh, X., & Lapuerta, M. (2017). Emission factors for PM2.5, CO, CO2, NOx, SO2 and particle size distributions from the combustion of wood species using a new controlled combustion chamber 3CE. Science of the Total Environment, 585(x), 901–910.
Dias Júnior, A. F., Anuto, R. B., Andrade, C. R., Souza, N. D. de, Takeshita, S., Brito, J. O., & Nolasco, A. M. (2017). Influence of Eucalyptus Wood Addition to Urban Wood Waste During Combustion. Cerne, 23, 455–464. doi: 10.1590/01047760201723042337
Duarte da Silva, M. J., Bezerra, B. S., Gomes Battistelle, R. A., & De Domenico Valarelli, I. (2013). Prospects for the use of municipal tree pruning wastes in particleboard production. Waste Management and Research, 31(9), 960–965. doi: 10.1177/0734242X13495101
Everard, C. D., Mcdonnell, K. P., & Fagan, C. C. (2012). Prediction of biomass gross calorific values using visible and near infrared spectroscopy. Biomass and Bioenergy, 45, 203–211. doi: 10.1016/j.biombioe.2012.06.007
Faraca, G., Boldrin, A., & Astrup, T. (2019). Resource quality of wood waste: the importance of physical and chemical impurities in wood waste for recycling. Waste Management, 87, 135–147. doi: 10.1016/j.wasman.2019.02.005
Fetene, Y., Addis, T., Beyene, A., & Kloos, H. (2018). Valorization of solid waste as key opportunity for green city development in the growing urban areas of the developing world. Journal of Environmental Chemical Engineering, 6(6), 7144–7151. doi: 10.1016/j.jece.2018.11.023
Gaitán-Álvarez, J., Moya, R., Puente-Urbina, A., & Rodriguez-Zúñiga, A. (2018). Thermogravimetric, Devolatilization Rate, and Differential Scanning Calorimetry Analyses of Biomass of Tropical Plantation Species of Costa Rica Torrefied at Different Temperatures and Times. Energies, March. doi: 10.3390/en11040696
Gan, Y. Y., Ong, H. C., Ling, T. C., Chen, W. H., & Chong, C. T. (2019). Torrefaction of de-oiled Jatropha seed kernel biomass for solid fuel production. Energy, 170, 367–374. doi: 10.1016/j.energy.2018.12.026.
Gouveia, N. (2012). Solid urban waste: socio-environmental impacts and prospects for sustainable management with social inclusion. Ciência e Saúde Coletiva, 17(6), 1503–1510. doi: 10.1590/S1413-81232012000600014
IBGE. (2020). Piracicaba’s Statistics. Retrieved from https://www.ibge.gov.br/cidades-e-estados/sp/piracicaba.html?
Jahirul, M. I., Rasul, M. G., Chowdhury, A. A., & Ashwath, N. (2012). Biofuels Production through Biomass Pyrolysis - A Technological Review. Energies, 5 (December), 4952–5001. doi: 10.3390/en5124952
Jankowska, A., Drożdżek, M., Sarnowski, P., & Horodeński, J. (2017). Effect of Extractives on the Equilibrium Moisture Content and Shrinkage of Selected Tropical Wood Species. BioResources, 12(1), 597–607. doi: 10.15376/biores.12.1.597-607
Jiang, K.-M., Cheng, C.-G., Ran, M., Lu, Y.-G., & Wu, Q.-L. (2018). Preparation of a biochar with a high calorific value from chestnut shells. New Carbon Materials, 33(2), 183–187. doi: 10.1016/S1872-5805(18)60333-6
Joshi, O., Grebner, D. L., & Khanal, P. N. (2015). Status of urban wood-waste and their potential use for sustainable bioenergy use in Mississippi. Resources, Conservation and Recycling, 102, 20–26. doi: 10.1016/j.resconrec.2015.06.010
Kenney, K. L., Smith, W. A., Gresham, G. L., & Westover, T. L. (2013). Understanding biomass feedstock variability. Biofuels, 4(1), 111–127. doi: 10.4155/bfs.12.83
Klingenberg, D., & Nolasco, A. M. (2017). Calorific value of urban forest wooden residues. Proceeding of the Brazilian Bioenergy Science and Technology Conference, 68–69. Retrieved from http://bbest.org.br/2017/images/Proceedings_RAF3_FVW_04052018.pdf
Klingenberg, D., Nolasco, A. M., & Dias Júnior, A. F. (2018). Physical characteristics of seven urban forestry species. Annals of XVI Encontro Brasileiro Em Madeiras e Em Estruturas de Madeira, 1–12.
Kofman, P. D. (2009). Wood Energy. The National Council for Forest Research and Development Maintained by Lauren MacLennan of COFORD, COFORD ANN, 1–94.
Lu, Z., Chen, X., Yao, S., Qin, H., Zhang, L., Yao, X., Yu, Z., & Lu, J. (2019). Feasibility study of gross calorific value, carbon content, volatile matter content and ash content of solid biomass fuel using laser-induced breakdown spectroscopy. Fuel, 258(May), 116150. doi: 10.1016/j.fuel.2019.116150
Mecca, M., D’Auria, M., & Todaro, L. (2019). Effect of heat treatment on wood chemical composition, extraction yield and quality of the extractives of some wood species by the use of molybdenum catalysts. Wood Science and Technology, 53(1), 119–133. doi: 10.1007/s00226-018-1057-3
Meira, A. M. de. (2010). Gestão de Resíduos da Arborização Urbana. Doctoral thesis. Universidade de São Paulo, Piracicaba, SP.
Meisel, F., & Thiele, N. (2014). Where to dispose of urban green waste? Transportation planning for the maintenance of public green spaces. Transportation Research Part A: Policy and Practice, 64, 147–162. doi: 10.1016/j.tra.2014.03.012
Moulin, J. C., Coimbra Nobre, J. R., Castro, J. P., Trugilho, P. F., & Chaves Arantes, M. D. (2017). Efeito dos extrativos e temperatura de carbonização nas características energéticas de resíduos madeireiros da Amazônia. Cerne, 23(2), 209–218. doi: 10.1590/01047760201723022216
Nunes, L. J. R., Matias, J. C. O., & Catalão, J. P. S. (2016). Biomass combustion systems: A review on the physical and chemical properties of the ashes. Renewable and Sustainable Energy Reviews, 53, 235–242. doi: 10.1016/j.rser.2015.08.053
Özyuguran, A., & Yaman, S. (2017). Prediction of Calorific Value of Biomass from Proximate Analysis. Energy Procedia, 107 (September 2016), 130–136. doi: 10.1016/j.egypro.2016.12.149
Palharini, K. M., Guimarães Junior, J. B., Faria, D. L., Mendes, R. F., Protásio, T. D. P., & Mendes, L. M. (2018). Potential Usage of the Urban Pruning Residue for Production of Wood Based Panels. Nativa, 6(3), 321. doi: 10.31413/nativa.v6i3.5418
Pereira, B. L. C., Carneiro, A. D. C. O., Carvalho, A. M. M. L., Colodette, J. L., Oliveira, A. C., & Fontes, M. P. F. (2013). Influence of Chemical Composition of Eucalyptus Wood on Gravimetric Yield and Charcoal Properties. BioResources, 8(3), 4574–4592. doi: 10.15376/biores.8.3.4574-4592
Pérez-Arévalo, J. J., & Velázquez-Martí, B. (2018). Evaluation of pruning residues of Ficus benjamina as a primary biofuel material. Biomass and Bioenergy, 108(November 2017), 217–223. doi: 10.1016/j.biombioe.2017.11.017
Ping, J. T., Loong, H. L., Aziz, K. M. A., & Morad, N. A. (2016). Enhanced Biomass Characteristics Index in palm biomass calorific value estimation. Applied Thermal Engineering, 105, 941–949. doi: 10.1016/j.applthermaleng.2016.05.090
Protásio, T. de P., Trugilho, P. F., Mirmehdi, S., & Silva, M. G. da. (2014). Quality and energetic evaluation of the charcoal made of babassu nut residues used in the steel industry. Ciência e Agrotecnologia, 38 (5), 435–444. doi: 10.1590/s1413-70542014000500003
Quinteiro, P., Tarelho, L., Marques, P., Martín-Gamboa, M., Freire, F., Arroja, L., & Dias, A. C. (2019). Life cycle assessment of wood pellets and wood split logs for residential heating. Science of the Total Environment, 689, 580–589. doi: 10.1016/j.scitotenv.2019.06.420
São Paulo, B. (2019). São Paulo State Energy Balance. Retrieved from http://dadosenergeticos.energia.sp.gov.br/portalcev2/intranet/BiblioVirtual/diversos/BalancoEnergetico.pdf
Shi, Y., Ge, Y., Chang, J., Shao, H., & Tang, Y. (2013). Garden waste biomass for renewable and sustainable energy production in China: Potential, challenges and development. Renewable and Sustainable Energy Reviews, 22, 432–437. doi: 10.1016/j.rser.2013.02.003
Silva Filho, D. F. da. (2009). Diagnóstico da Cobertura Arbórea em Tecido Urbano do Município de Piracicaba – SP. Relatório Apresentado à Fundação de Estudos Agrários Luiz de Queiroz – FEALQ/Instituto de Planejamento de Piracicaba – IPPLAP., 22.
Ministério do Desenvolvimento Regional. MDR (2019). 17° Diagnóstico do Manejo de Resíduos Sólidos Urbanos. Secretaria Nacional de Saneamento – SNS, Sistema Nacional de Informações sobre Saneamento (SNIS). Brasília. Retrieved from http://www.snis.gov.br/downloads/diagnosticos/rs/2018/Diagnostico_RS2018.pdf
Pereira, A. S.; Shitsuka, D. M.; Parreira, F. J.; Shitsuka, R. (2018). Metodologia da Pesquisa Científica. Santa Maria, RS: UFSM. Retrieved from https://repositorio.ufsm.br/bitstream/handle/1/15824/Lic_Computacao_Metodologia-Pesquisa-Cientifica.pdf?sequence=1
Tahir, M. H., Zhao, Z., Ren, J., Naqvi, M., Ahmed, M. S., Shah, T.-U., Shen, B., Elkamel, A., Irfan, R. M., & Rahman, A. ur. (2019). Fundamental investigation of the effect of functional groups on the variations of higher heating value. Fuel, 253 (February), 881–886. doi: 10.1016/j.fuel.2019.05.079
Tan, M., Luo, L., Wu, Z., Huang, Z., Zhang, J., Huang, J., Yang, Y., Zhang, X., & Li, H. (2020). Pelletization of Camellia oleifera Abel. shell after storage: Energy consumption and pellet properties. Fuel Processing Technology, 201(January), 106337. doi: 10.1016/j.fuproc.2020.106337
Team, R. C., 2020. R: A language and environment for statistical computing.
Tenorio, C., & Moya, R. (2013). Thermogravimetric characteristics, its relation with extractives and chemical properties and combustion characteristics of ten fast-growth species in Costa Rica. Thermochimica Acta, 563, 12–21. doi: 10.1016/j.tca.2013.04.005
Timilsina, N., Staudhammer, C. L., Escobedo, F. J., & Lawrence, A. (2014). Tree biomass, wood waste yield, and carbon storage changes in an urban forest. Landscape and Urban Planning, 127, 18–27. doi: 10.1016/j.landurbplan.2014.04.003
Varma, A. K., & Mondal, P. (2018). Pyrolysis of pine needles: effects of process parameters on products yield and analysis of products. Journal of Thermal Analysis and Calorimetry, 131. doi: 10.1007/s10973-017-6727-0
Vassilev, S. V., Vassileva, C. G., & Vassilev, V. S. (2015). Advantages and disadvantages of composition and properties of biomass in comparison with coal: An overview. Fuel, 158, 330–350. doi: 10.1016/j.fuel.2015.05.050
Vega, L. Y., López, L., Valdés, C. F., & Chejne, F. (2019). Assessment of energy potential of wood industry wastes through thermochemical conversions. Waste Management, 87, 108–118. doi: 10.1016/j.wasman.2019.01.048
Wan, G., & Frazier, C. E. (2019). Pine Extractives Strongly Affect Lignin Thermochemical Pathways. Sustainable Chemistry and Engineering, 7(21), 17999–18004. doi: 10.1021/acssuschemeng.9b04833
Wolf, C., Klein, D., Richter, K., & Weber-Blaschke, G. (2016). Mitigating environmental impacts through the energetic use of wood: Regional displacement factors generated by means of substituting non-wood heating systems. Science of the Total Environment, 569–570, 395–403. doi: 10.1016/j.scitotenv.2016.06.021
Wu, M. R., Schott, D. L., & Lodewijks, G. (2011). Physical properties of solid biomass Physical properties of solid biomass. May. doi: 10.1016/j.biombioe.2011.02.020
Xin, S., Mi, T., Liu, X., & Huang, F. (2018). Effect of torrefaction on the pyrolysis characteristics of high moisture herbaceous residue. Energy, 152. doi: 10.1016/j.energy.2018.03.104.
Xing, J., Luo, K., Wang, H., Gao, Z., & Fan, J. (2019). A comprehensive study on estimating higher heating value of biomass from proximate and ultimate analysis with machine learning approaches. Energy, 188, 116077. doi: 10.1016/j.energy.2019.116077
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2020 Debora Klingenberg; Adriana Maria Nolasco; Ananias Francisco Dias Júnior; Luana Candaten; Annie Karoline Lima Cavalcante; Elias Costa de Souza
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Los autores que publican en esta revista concuerdan con los siguientes términos:
1) Los autores mantienen los derechos de autor y conceden a la revista el derecho de primera publicación, con el trabajo simultáneamente licenciado bajo la Licencia Creative Commons Attribution que permite el compartir el trabajo con reconocimiento de la autoría y publicación inicial en esta revista.
2) Los autores tienen autorización para asumir contratos adicionales por separado, para distribución no exclusiva de la versión del trabajo publicada en esta revista (por ejemplo, publicar en repositorio institucional o como capítulo de libro), con reconocimiento de autoría y publicación inicial en esta revista.
3) Los autores tienen permiso y son estimulados a publicar y distribuir su trabajo en línea (por ejemplo, en repositorios institucionales o en su página personal) a cualquier punto antes o durante el proceso editorial, ya que esto puede generar cambios productivos, así como aumentar el impacto y la cita del trabajo publicado.