Optimización por metodología de superficie de respuesta para la producción de β-galactosidasa a partir de Enterococcus faecium utilizando medio reciclado

Autores/as

DOI:

https://doi.org/10.33448/rsd-v9i10.8135

Palabras clave:

Medio reciclado; Metodología de superficie de respuesta; Enzima.

Resumen

En este estudio, se evaluó el medio reciclado de tres microorganismos fotosintéticos (Chlorella vulgaris, Dunaliella tertiolecta y Arthrospira platensis) para su uso en la producción de β-galactosidasa, una enzima utilizada tradicionalmente para degradar la lactosa en productos lácteos. El medio de Chlorella vulgaris reciclado se seleccionó para optimizar el medio de cultivo para la producción de β-galactosidase por Enterococcus faecium en fermentación sumergida. Se aplicó la Metodología de Superficie de Respuesta (MSR) para optimizar los niveles de variables como: temperatura (30-40 °C), concentración de lactosa (0-5%), tiempo de fermentación (12-24h) y pH (6-8). Todas las variables estudiadas mostraron efectos estadísticamente significativos sobre la producción de β-galactosidasa en las siguientes condiciones: temperatura de 31 °C, concentración de lactosa de 5,34%, tiempo de fermentación de 12 hy pH de 8,0. Con la optimización, la actividad de la β-galactosidasa fue de 29,85 U / mL, cerca del valor predicho (30,83 U / mL). Con esto, se puede concluir que el medio de cultivo optimizado con cultivo residual de la microalga C. vulgaris puede ser importante para la industria biotecnológica, ya que es una fuente abundante y de bajo costo para la producción de microorganismos bioactivos como el probiótico Enterococcus faecium.

Citas

Akolkar, S. K., Sajgure, A., & Lele, S. S. (2005). Lactase production from Lactobacillus acidophilus. World Journal of Microbiology and Biotechnology, 21(6–7), 1119–1122.

Ansari, S. A., & Satar, R. (2012). Recombinant β-galactosidases - Past, present and future: A mini review. Journal of Molecular Catalysis B: Enzymatic, 81, 1–6.

Barros Neto, B., Scarminio, I. S., & Bruns, R. E. (1995). Planejamento e otimização de experimentos. 2nd ed. Campinas- SP, Brasil: Editora da UNICAMP.

Berry, J. P. (2008). Cyanobacterial Toxins as Allelochemicals with Potential Applications as Algaecides, Herbicides and Insecticides. Marine Drugs, 6 (2), 117–146.

Bosso, A., Iglecias Setti, A. C., Tomal, A. B., Guemra, S., Morioka, L. R. I., & Suguimoto, H. H. (2019). Substrate consumption and beta-galactosidase production by Saccharomyces fragilis IZ 275 grown in cheese whey as a function of cell growth rate. Biocatalysis and Agricultural Biotechnology, 21, 101335.

Braga, A. R. C., Gomes, P. A., & Kalil, S. J. (2012). Formulation of Culture Medium with Agroindustrial Waste for β-Galactosidase Production from Kluyveromyces marxianus ATCC 16045. Food and Bioprocess Technology, 5(5), 1653–1663.

Chanalia, P., Gandhi, D., Attri, P., & Dhanda, S. (2018). Purification and characterization of β-galactosidase from probiotic Pediococcus acidilactici and its use in milk lactose hydrolysis and galactooligosaccharide synthesis. Bioorganic Chemistry, 77, 176–189.

Chauhan, B., & Gupta, R. (2004). Application of statistical experimental design for optimization of alkaline protease production from Bacillus sp. RGR-14. Process Biochemistry, 39(12), 2115–2122.

Chen, M., Tang, H., Ma, H., Holland, T. C., Ng, K. Y. S., & Salley, S. O. (2011). Effect of nutrients on growth and lipid accumulation in the green algae Dunaliella tertiolecta. Bioresource Technology, 102(2), 1649–1655.

Dagbagli, S., & Goksungur, Y. (2008). Optimization of β-galactosidase production using Kluyveromyces lactis NRRL Y-8279 by response surface methodology. Electronic Journal of Biotechnology, 11(4).

Das, B., Prasad, A., Bhattacharjee, S., & Chakraborty, S. (2015). Ecotoxicology and Environmental Safety Lactose hydrolysis by β -galactosidase enzyme : optimization using response surface methodology. Ecotoxicology and Environmental Safety, 121, 244–252.

De Jesus Raposo, M. F., De Morais, R. M. S. C., & De Morais, A. M. M. B. (2013). Health applications of bioactive compounds from marine microalgae. Life Sciences, 93(15), 479–486.

Depraetere, O., Pierre, G., Noppe, W., Vandamme, D., Foubert, I., Michaud, P., & Muylaert, K. (2015). Influence of culture medium recycling on the performance of Arthrospira platensis cultures. Algal Research, 10, 48–54.

Domingues, L., Lima, N., & Teixeira, J. A. (2005). Aspergillus niger β-galactosidase production by yeast in a continuous high cell density reactor. Process Biochemistry, 40(3–4), 1151–1154.

Duan, X., Hu, S., Qi, X., Gu, Z., & Wu, J. (2017). Optimal extracellular production of recombinant Bacillus circulans β-galactosidase in Escherichia coli BL21(DE3). Process Biochemistry, 53, 17–24.

El-naggar, N. E., Hussein, M. H., & Shaaban-dessuuki, S. A. (2020). Production , extraction and characterization of Chlorella vulgaris soluble polysaccharides and their applications in AgNPs biosynthesis and biostimulation of plant growth, 1–19.

Farooq, W., Suh, W. I., & Park, M. S. (2015). Water use and its recycling in microalgae cultivation for biofuel application. Bioresource Technology, 184, 73–81.

Fogg, G. E. (1983). The Ecological Significance of Extracellular Products of Phytoplankton Photosynthesis. Botanica Marina, 26(1), 3–14.

Freitas, A. C., Pintado, A. E., Pintado, M. E., & Malcata, F. X. (1999). Organic acids produced by Lactobacilli, enterococci and yeasts isolated from Picante cheese. European Food Research and Technology, 209(6), 434–438.

Fret, J., Roef, L., Blust, R., Diels, L., Tavernier, S., Vyverman, W., & Michiels, M. (2017). Reuse of rejuvenated media during laboratory and pilot scale cultivation of Nannochloropsis sp. Algal Research, 27, 265–273.

Gangl, D., Zedler, J. A. Z., Rajakumar, P. D., Martinez, E. M. R., Riseley, A., Włodarczyk, A., Robinson, C. (2015). Biotechnological exploitation of microalgae. Journal of Experimental Botany, 66(22), 6975–6990.

Giraldo Calderón, N. D., Díaz Bayona, K. C., & Atehortúa Garcés, L. (2018). Immobilization of the green microalga Botryococcus braunii in polyester wadding: Effect on biomass, fatty acids, and exopolysaccharide production. Biocatalysis and Agricultural Biotechnology, 14, 80–87.

Hadj-Romdhane, F., Jaouen, P., Pruvost, J., Grizeau, D., Van Vooren, G., & Bourseau, P. (2012). Development and validation of a minimal growth medium for recycling Chlorella vulgaris culture. Bioresource Technology, 123, 366–374.

Hadj-romdhane, F., Zheng, X., Jaouen, P., Pruvost, J., Grizeau, D., Croué, J. P., & Bourseau, P. (2013). The culture of Chlorella vulgaris in a recycled supernatant : Effects on biomass production and medium quality. Bioresource Technology, 132, 285–292.

Hadj-Romdhane, F., Zheng, X., Jaouen, P., Pruvost, J., Grizeau, D., Croué, J. P., & Bourseau, P. (2013). The culture of Chlorella vulgaris in a recycled supernatant: Effects on biomass production and medium quality. Bioresource Technology, 132, 285–292.

Hongpattarakere, T., Cherntong, N., Wichienchot, S., Kolida, S., & Rastall, R. A. (2012). In vitro prebiotic evaluation of exopolysaccharides produced by marine isolated lactic acid bacteria. Carbohydrate Polymers, 87(1), 846–852.

Hsu, C. A., Yu, R. C., & Chou, C. C. (2005). Production of β-galactosidase by Bifidobacteria as influenced by various culture conditions. International Journal of Food Microbiology, 104(2), 197–206.

Kamran, A., Bibi, Z., Aman, A., & Qader, S. A. U. (2016). Lactose hydrolysis approach: Isolation and production of β-galactosidase from newly isolated Bacillus strain B-2. Biocatalysis and Agricultural Biotechnology, 5, 99–103.

Khovrytchev, M. P., Strunk, C., Schuhmann, E., Lirova, S. A., & Rabotnova, I. L. (1977). Einfluß der Cu++-Ionen auf den morphologischen, cytologischen und physiologischen Zustand von Candida utilis-Zellen bei kontinuierlicher Kultivierung. Zeitschrift Für Allgemeine Mikrobiologie, 17(1), 29–45.

Liu, C., Kolida, S., Charalampopoulos, D., & Rastall, R. A. (2020). An evaluation of the prebiotic potential of microbial levans from Erwinia sp. 10119. Journal of Functional Foods, 64, 103668.

Liu, L., Pohnert, G., & Wei, D. (2016). Extracellular metabolites from industrial microalgae and their biotechnological potential. Marine Drugs, 14(10), 1–19.

Martarello, R. D., Cunha, L., Cardoso, S. L., de Freitas, M. M., Silveira, D., Fonseca-Bazzo, Y. M., … Magalhães, P. O. (2019). Optimization and partial purification of beta-galactosidase production by Aspergillus niger isolated from Brazilian soils using soybean residue. AMB Express, 9(1).

Murad, H. A., Refaea, R. I., Aly, E. M., & Office, E. C. (2011). Utilization of UF-Permeate for Production of β-galactosidase by Lactic Acid Bacteria, 60(2), 139–144.

Nagy, Z., Kiss, T., Szentirmai, A., & Biró, S. (2001). β-Galactosidase of Penicillium chrysogenum: Production, Purification, and Characterization of the Enzyme. Protein Expression and Purification, 21(1), 24–29.

Panesar, P. S. (2008). Production of β-D-galactosidase from whey using Kluyveromyces marxianus. Research Journal of Microbiology, 3(1), 24-29.

Panesar, P. S., Panesar, R., Singh, R. S., Kennedy, J. F., & Kumar, H. (2006). Microbial production, immobilization and applications of β-D-galactosidase. Journal of Chemical Technology and Biotechnology, 81(4), 530–543.

Parada, J. L., Zulpa de Caire, G., Zaccaro de Mulé, M. C., & Storni de Cano, M. M. (1998). Lactic acid bacteria growth promoters from Spirulina platensis. International Journal of Food Microbiology, 45(3), 225-228.

Prasad, L. N., 2, Ghosh, B. C., 3, & Sherkat, F. and Shah, N. P. (2013). Extraction and characterisation of β-galactosidase produced by Bifidobacterium animalis spp. lactis Bb12 and Lactobacillus delbrueckii spp. bulgaricus ATCC 11842 grown in whey. International Food Research Journal, 20, 487–494.

Ramana Rao, M. V., & Dutta, S. M. (1977). Production of beta-galactosidase from Streptococcus thermophilus grown in whey. Applied and Environmental Microbiology, 34(2), 185–188.

Rodolfi, L., Zittelli, G. C., Barsanti, L., Rosati, G., & Tredici, M. R. (2003). Growth medium recycling in Nannochloropsis sp. mass cultivation. Biomolecular Engineering, 20(4–6), 243–248.

Silva, R. A., Lima, M. S. F., Viana, J. B. M., Bezerra, V. S., Pimentel, M. C. B., Porto, A. L. F., Filho, J. L. L. (2012). Can artisanal ‘“ Coalho ”’ cheese from Northeastern Brazil be used as a functional food. Food Chemistry, 135(3), 1533–1538.

WS Reznikoff, J. A. (1978). Lucid overview of bile salts. New York.

Zhang, J., Liu, L., & Chen, F. (2019). Production and characterization of exopolysaccharides from Chlorella zofingiensis and Chlorella vulgaris with anti-colorectal cancer activity.

International Journal of Biological Macromolecules, 134, 976–983.

Zhang, J., Liu, L., Ren, Y., & Chen, F. (2019). Characterization of exopolysaccharides produced by microalgae with antitumor activity on human colon cancer cells. International Journal of Biological Macromolecules, 128, 761–767.

Descargas

Publicado

17/09/2020

Cómo citar

SILVA, E. C. da; CALAÇA , P. R. de A. .; PORTO, A. L. F.; BEZERRA, R. P. .; SOARES, M. T. C. V. . Optimización por metodología de superficie de respuesta para la producción de β-galactosidasa a partir de Enterococcus faecium utilizando medio reciclado. Research, Society and Development, [S. l.], v. 9, n. 10, p. e479108135, 2020. DOI: 10.33448/rsd-v9i10.8135. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/8135. Acesso em: 26 nov. 2024.

Número

Sección

Ciencias Agrarias y Biológicas