Método de uso del software Fuzzy Logic Toolbox de MATLAB para el modelado matemático de variables biométricas y nutricionales del cultivo de soja
DOI:
https://doi.org/10.33448/rsd-v9i10.8938Palabras clave:
Inteligencia artificial; Sistema difuso; Lógica difusa.Resumen
La lógica difusa fue introducida en el mundo científico en la década de 1960 por el entonces matemático Lotif Asker Zadeh. Su concepto se basa en el enfoque del principio de incertidumbre no probabilístico, compuesto por subjetividad e imprecisión en los términos lingüísticos de la información, asignando valores para el grado de relevancia entre 0 y 1. La lógica difusa está presente en los más diversos campos de actividad, desde la construcción de aeronaves hasta su uso generalizado en el campo médico. Así, su uso se ha ido intensificando en el campo de las ciencias agrarias, ya que posee un mayor grado de precisión en relación a los modelos estadísticos, realizados mediante experimentos agronómicos. El objetivo fue realizar una descripción didáctica de la metodología difusa utilizada para construir un sistema difuso aplicado a soja cultivada bajo sistema de labranza cero. Para el modelado se utilizó el software MATLAB R2019a, en el cual se imprimió la pantalla de cada paso durante la construcción del modelo, con el fin de contribuir a la amplia difusión de los sistemas difusos en las ciencias agrícolas.
Citas
Anjos, J. C. A (2001). Um sistema de avaliação de produtividade em assentamentos rurais utilizando lógica fuzzy. 82 f. Dissertação (Mestrado) - Pós-Graduação em Ciência da Computação, Universidade Federal de Santa Catarina.
Cremasco, C. P.; Gabriel Filho, L. R. A., & Cataneo, A. (2010) Methodology for determination of fuzzy controller pertinence functions for the energy evaluation of poultry industry companies. Energia na Agricultura, 259(3):21-39.
Gabriel Filho, L. R. A.; Cremasco, C. P.; Putti, F. F., & Chacur, M. G. M. (2011) Application of fuzzy logic for the evaluation of livestock slaughtering. Engenharia Agrícola, 31(4):813-825.
Gabriel Filho, L. R. A.; Pigatto, G. A. S., & Lourenzani, A. E. B. S. (2015) Fuzzy rule-based system for evaluation of uncertainty in cassava chain. Engenharia Agrícola, 35(2):350-367.
Gabriel Filho, L. R. A.; Putti, F. F.; Cremasco, C. P.; Bordin, D.; Chacur, M. G. M., & Gabriel L. R. A. (2016) Software to assess beef cattle body mass through the fuzzy body mass index. Engenharia Agrícola, 36(1): 179-193.
Goes, R. J. (2016). Doses de Nitrogênio em Coberturas Vegetais e Molibdênio Foliar na Soja em Sucessão. 77 f. Tese (Doutorado) - Pós-Graduação em Agronomia (Sistemas de Produção), Universidade Estadual Paulista.
Janarthanan, R.; Balamurali, R.; Annapoorani, A., & Vimala, V. (2020). Prediction of rainfall using fuzzy logic. Materials Today: Proceedings, S2214785320346332.
Li, M.; Sui, R.; Meng, Y., & Yan, H. (2019). A real-time fuzzy decision support system for alfalfa irrigation. Computers and Electronics in Agriculture, 163, 104870.
Mamdani, E. H., & Assilian, S. (1975). An Experiment in Linguistic Synthesis with a Fuzzy Logic Controller. International Journal of Man-Machine Studies, 7(1), 1–13.
Martínez, M. P.; Cremasco, C. P.; Gabriel Filho, L. R. A.; Braga Junior, S. S.; Bednaski, A. V.; Quevedo-Silva, F.; Correa, C. M.; Silva, D., & Padgett, R. C. M. L. (2020) Fuzzy inference system to study the behavior of the green consumer facing the perception of greenwashing. Journal of Cleaner Production, 242: 116064.
Pereira, D. F.; Bighi, C. A.; Gabriel Filho, L. R. A., & Cremasco, C. P. C. (2008) Sistema fuzzy para estimativa do bem-estar de matrizes pesadas. Engenharia Agrícola, 28(4):624-633.
Phuong, N. H., & Kreinovich, V. (2001). Fuzzy logic and its applications in medicine. International Journal of Medical Informatics, 62(2–3), 165–173.
Prabakaran, G.; Vaithiyanathan, D., & Ganesan, M. (2018). Fuzzy decision support system for improving the crop productivity and efficient use of fertilizers. Computers and Electronics in Agriculture, 150, 88–97.
Putti, F. F.; Gabriel Filho, L. R. A.; Cremasco, C. P.; Bonini Neto, A.; Bonini, C. S. B., & Reis, A. R. (2017a) A Fuzzy mathematical model to estimate the effects of global warming on the vitality of Laelia purpurata orchids. Mathematical Biosciences, 288:124-129.
Putti, F. F.; Gabriel Filho, L. R. A.; Silva, A. O.; Ludwig, R., & Cremasco, C. P. (2014) Fuzzy logic to evaluate vitality of catasetum fimbiratum species (Orchidacea). Irriga, 19(3):405-413.
Putti, F. F.; Kummer, A. C. B.; Grassi Filho, H.; Gabriel Filho, L. R. A., & Cremasco, C. P. (2017b) Fuzzy modeling on wheat productivity under different doses of sludge and sewage effluent. Engenharia Agrícola, 37(6):1103-1115.
Putti, F. F. (2015). Análise dos indicadores biométricos e nutricionais da cultura da alface (Lactuca sativa L.) irrigada com água tratada magneticamente utilizando modelagem fuzzy. 186 f. Tese (Doutorado) - Pós-Graduação em Agronomia (Irrigação e Drenagem), Universidade Estadual Paulista.
Ren, Z.; Liao, H., & Liu, Y. (2020). Generalized Z-numbers with hesitant fuzzy linguistic information and its application to medicine selection for the patients with mild symptoms of the COVID-19. Computers & Industrial Engineering, 145, 106517.
Rignel, D. G.; Chenci, G. P., & Lucas, C. A. (2011). Uma introdução a lógica fuzzy. Revista Eletrônica de Sistemas de Informação e Gestão Tecnológica, 1(1), 12.
Salgado, C. M.; Vieira, S. M.; Mendonça, L. F.; Finkelstein, S., & Sousa, J. M. C. (2016). Ensemble fuzzy models in personalized medicine: Application to vasopressors administration. Engineering Applications of Artificial Intelligence, 49, 141–148.
Slavyanov, K. (2018). An algorithm of fuzzy inference system for human resources selection tools. Society Integration Education. Proceedings of the International Scientific Conference, 5, 445–454.
Viais Neto, D. S.; Cremasco, C. P.; Bordin, D.; Putti, F. F.; Silva Junior, J. F., & Gabriel Filho, L. R. A. (2019a) Fuzzy modeling of the effects of irrigation and water salinity in harvest point of tomato crop. Part I: description of the method. Engenharia Agrícola, 39(3):294-304.
Viais Neto, D. S.; Cremasco, C. P.; Bordin, D.; Putti, F. F.; Silva Junior, J. F., & Gabriel Filho, L. R. A. (2019b) Fuzzy modeling of the effects of irrigation and water salinity in harvest point of tomato crop. Part II: application and interpretation. Engenharia Agrícola, 39(3):305-14.
Viais Neto, D. S. (2016). Modelagem fuzzy para avaliação do desenvolvimento do tomate em tensões de água no solo e doses de salinidade na irrigação. 70 f. Tese (Doutorado) - Pós-Graduação em Agronomia (Irrigação e Drenagem), Universidade Estadual Paulista.
Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8(3), 338–353.
Zimmermann, H. J. (2010). Fuzzy set theory: Fuzzy set theory. Wiley Interdisciplinary Reviews: Computational Statistics, 2(3), 317–332.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2020 Bruno César Góes; Renato Jaqueto Goes; Camila Pires Cremasco; Luís Roberto Almeida Gabriel Filho
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Los autores que publican en esta revista concuerdan con los siguientes términos:
1) Los autores mantienen los derechos de autor y conceden a la revista el derecho de primera publicación, con el trabajo simultáneamente licenciado bajo la Licencia Creative Commons Attribution que permite el compartir el trabajo con reconocimiento de la autoría y publicación inicial en esta revista.
2) Los autores tienen autorización para asumir contratos adicionales por separado, para distribución no exclusiva de la versión del trabajo publicada en esta revista (por ejemplo, publicar en repositorio institucional o como capítulo de libro), con reconocimiento de autoría y publicación inicial en esta revista.
3) Los autores tienen permiso y son estimulados a publicar y distribuir su trabajo en línea (por ejemplo, en repositorios institucionales o en su página personal) a cualquier punto antes o durante el proceso editorial, ya que esto puede generar cambios productivos, así como aumentar el impacto y la cita del trabajo publicado.