Fitoquímica, potencial quelante y reductor del aceite esencial de Mesosphaerum suaveolens (L.) Kuntze (Lamiaceae)

Autores/as

DOI:

https://doi.org/10.33448/rsd-v9i11.9333

Palabras clave:

Antioxidante; Bamburral; Ferroso; Férrico.

Resumen

Los productos de origen natural con potencial quelante o reductor libres de Fe+ se vuelven prometedores en la investigación de antioxidantes, porque tienen la capacidad de suavizar los metales de transición que pueden causar daño celular por estrés oxidativo. Así, el objetivo de este estudio es promover la evaluación del potencial antioxidante del aceite esencial por el método de la ortofenantrolina, además de promover el análisis fitoquímico del aceite esencial de M. suaveolens. Esta verdura, por otros métodos antioxidantes, tiene propiedades prometedoras para inhibir los radicales libres. Para lograr estos objetivos, se realizó un análisis cromatográfico, así como los ensayos de ortofenantrolina para evaluar la formación del complejo Fe2+ 1,10-ortofenantrolina. El β-cariofileno (20,38%) se destaca como el principal compuesto de la especie. El aceite esencial interfirió con la formación del complejo, lo que sugiere una actividad quelante moderada a la concentración más alta probada (480 µg/mL), lo que demuestra que el aceite puede quelar el Fe2+. La adición de ácido ascórbico a la mezcla aumentó significativamente la absorbancia para todas las concentraciones probadas, en la evaluación del poder reductor de Fe3+ a Fe2+. Considerando una fuente potencial de antioxidantes naturales, puede ser relevante para el manejo del estrés oxidativo.

Citas

Barreiros, A. L., David, J. M., & David, J. P. (2006). Estresse oxidativo: relação entre geração de espécies reativas e defesa do organismo. Química nova, 29(1), 113-123.

Bezerra, J. W. A., Costa, A. R., da Silva, M. A. P., Rocha, M. I., Boligon, A. A., da Rocha, J. B. T., Barros, L. M. B., & Kamdem, J. P. (2017). Chemical composition and toxicological evaluation of Hyptis suaveolens (L.) Poiteau (Lamiaceae) in Drosophila melanogaster and Artemia salina. South African Journal of Botany, 113, 437-442.

Bezerra, J.W.A., Costa, A. R., Rodrigues, F. C.; Cunha, F. A. B.; Silva, V. B.; Boligon, A. A.; & Anraku, M.M. Mesosphaerum suaveolens (L.) Kuntze (bamburral): Planta medicinal com potencial antioxidante e rica em polifenóis. Revista Cubana de Plantas Medicinales, 2018, 24, 1–15.

Britton, R. S., Leicester, K. L., & Bacon, B. R. (2002). Iron toxicity and chelation therapy. International journal of hematology, 76(3), 219-228.

Calleja, M. A., Vieites, J. M., Montero-Meterdez, T., Torres, M. I., Faus, M. J., Gil, A., & Suárez, A. (2013). The antioxidant effect of β-caryophyllene protects rat liver from carbon tetrachloride-induced fibrosis by inhibiting hepatic stellate cell activation. British journal of nutrition, 109(3), 394-401.

Carvalho, W. R. (2017). Sala de Estudo in vitro dos potenciais antioxidante, antimicrobiano e anti-HIV de extratos de Hyptis lacustres A. St.- Hil. Ex Benth (Lamiaceae) (Dissertação de Mestrado). Instituto de Biociências, São Paulo, SP, Brasil.

Chanda, S., & Dave, R. (2009). In vitro models for antioxidant activity evaluation and some medicinal plants possessing antioxidant properties: An overview. African Journal of Microbiology Research, 3(13), 981-996.

Chen, C. W., & Ho, C. T. (1995). Antioxidant properties of polyphenols extracted from green and black teas. Journal of food lipids, 2(1), 35-46.

Dahham, S., Tabana, Y., Iqbal, M., Ahamed, M., Ezzat, M., Majid, A., & Majid, A. (2015). The Anticancer, Antioxidant and Antimicrobial Properties of the Sesquiterpene β-Caryophyllene from the Essential Oil of Aquilaria crassna. Molecules, 20(7), 11808–11829.

Dinis, T. C. P., Madeira, V. M. C., & Almeida, M. L. M. (1994). Action of phenolic derivates (acetoaminophen, salycilate and 5-aminosalycilate) as inhibitors of membrane lipid peroxidation and as peroxyl radical scavengers. Archives of Biochemistry and Biophysics, 315, 161–169.

Dixon, S. J., & Stockwell, B. R. (2014). The role of iron and reactive oxygen species in cell death. Nature Chemical Biology, 10, 9-17.

Duarte, A. E., Waczuk, E. P, Roversi, K., Silva, M. A., Barros, L. M., Cunha, F. A. B., Menezes, I. R. A., Costa, J. G. M., Boligon, A. A., Ademiluyi A. O., Kamdem, J. P., Rocha, J. B. T., & Burger, M. E. (2015). Polyphenolic Composition and Evaluation of Antioxidant Activity, Osmotic Fragility and Cytotoxic Effects of Raphiodon echinus (Nees & Mart.) Schauer. Molecules, 21(1), 2.

Dunn, L. L., Rahmanto, Y. S., & Richardson, D. R. (2007). Iron uptake and metabolism in the new millennium. Trends in cell biology, 17(2), 93-100.

Dusek, P., Roos, P. M., Litwin, T., Schneider, S. A., Flaten, T. P., & Aaseth, J. (2015). The neurotoxicity of iron, copper and manganese in Parkinson's and Wilson's diseases. Journal of Trace Elements in Medicine and Biology, 31, 193-203.

Engle, M. A., Erlandson, M., & Smith, C. H. (1964). Late cardiac complications of chronic, severe, refractory anemia with hemochromatosis. Circulation, 30(5), 698-705.

Galvão, W. A., Braz Filho, R., Canuto, K. M., Ribeiro, P. R. V., Campos, A. R., Moreira, A. C. O. M., Silva, S. O., Mesquita Filho, F. A., Santos, S. A. A. R., Melo Junior, J. M. A., Gonçalves, N. G. G., Fonseca, S. G. C., & Bandeira, M. A. M. (2018). Gastroprotective and anti-inflammatory activities integrated to chemical composition of Myracrodruon urundeuva Allemão-A conservationist proposal for the species. Journal of ethnopharmacology, 222, 177-189.

Hossan, M. S., Jindal, H., Maisha, S., Samudi Raju, C., Devi Sekaran, S., Nissapatorn, V., Kaharudin, F., Yi, L. S., Khoo, T. J., Rahmatullah, M., & Wiart, C. (2018). Antibacterial effects of 18 medicinal plants used by the Khyang tribe in Bangladesh. Pharmaceutical biology, 56(1), 201-208.

Jesus, N. Z. T., Falcão, H. S., Lima, G. R. M., Caldas Filho, M. R. D., Sales, I. R. P., Gomes, I. F., Santos, S. G., Tavares, J. F., Barbosa-Filho, J. M., & Batista, L. M. (2013). Hyptis suaveolens (L.) Poit (Lamiaceae), a medicinal plant protects the stomach against several gastric ulcer models. Journal of ethnopharmacology, 150(3), 982-988.

Joshi, S. C., Verma, A. R., & Mathela, C. S. (2010). Antioxidant and antibacterial activities of the leaf essential oils of Himalayan Lauraceae species. Food and Chemical Toxicology, 48(1), 37-40.

Kamdem, J. P., Adeniran, A., Boligon, A. A., Klimaczewski, C. V., Elekofehinti, O. O., Hassan, W., Ibrahim, M., Waczuk, E. P., Meinerz, D. F., & Athayde, M. L. (2013). Antioxidant activity, genotoxicity and cytotoxicity evaluation of lemon balm (Melissa officinalis L.) ethanolic extract: Its potential role in neuroprotection. Industrial Crops and Products, 51, 26-34.

Liu, T., Liu, W., Zhang, M., Yu, W., Gao, F., Li, C., Wang, S. Feng, J., & Zhang, X. Z. (2018). Ferrous-supply-regeneration nanoengineering for cancer-cell-specific ferroptosis in combination with imaging-guided photodynamic therapy. American Chemical Society, 12(12), 12181-12192.

Luz, L. R., Porto, D. D., Castro, C. B., Silva, M. F. S., Godoy, A. F. E., Canuto, K. M., Brito, E. S., Becker, H., Pessoa, C. Ó., & Zocolo, G. J. (2018). Metabolomic profile of Schinopsis brasiliensis via UPLC-QTOF-MS for identification of biomarkers and evaluation of its cytotoxic potential. Journal of Chromatography B, 1099, 97-109.

Minotti, G., & Aust, S. D. (1987). An investigation into the mechanism of citrate–Fe2+- dependent lipid peroxidation. Free Radical Biology and Medicine, 3, 379–387.

Mittler, R. (2017). ROS are good. Trends in plant science, 22(1), 11-19.

Nantitanon, W., Chowwanapoonpohn, S., & Okonogi, S. (2007). Antioxidant and antimicrobial activities of Hyptis suaveolens essential oil. Scientia Pharmaceutica, 75(1), 35-54.

Oboh, G., Puntel, R. L., & Rocha, J. B. T. (2007). Hot pepper (Capsicum annuum, Tepin and Capsicum chinese, Habanero) prevents Fe2+-induced lipid peroxidation in brain–in vitro. Food chemistry, 102(1), 178-185.

Razo-Hernández, R., Pineda-Urbina, K., Velazco-Medel, M., Villanueva-García, M., Sumaya-Martínez, M., & Martínez-Martínez, F. (2014). QSAR Study of the DPPH· radical scavenging activity of coumarin derivatives and xanthine oxidase inhibition by molecular docking. Open Chemistry, 12(10), 1067-1080.

Costa, A. R., Almeida Bezerra, J. W., Cruz, R. P. D., Freitas, M. A., Silva, V. B., Neto, J. C., Santos, A. T. L., Braga, M. F. B., Silva, L. A., Rocha, M. I., Kamdem, J. P., Iriti, M., Vitalini, S., Duarte, A. E., & Barros, L. M. (2020). In vitro Antibiotic and Modulatory Activity of Mesosphaerum suaveolens (L.) Kuntze against Candida strains. Antibiotics, 9(2), 46.

Salkovic-Petrisic, M., Knezovic, A., Osmanovic-Barilar, J., Smailovic, U., Trkulja, V., Riederer, P., Amit T., Mandel S., & Youdim, M. B. (2015). Multi-target iron-chelators improve memory loss in a rat model of sporadic Alzheimer's disease. Life sciences, 136, 108-119.

Sang, M., Luo, R., Bai, Y., Dou, J., Zhang, Z., Liu, F., Feng, F., Xu, J., & Liu, W. (2019). Mitochondrial membrane anchored photosensitive nano-device for lipid hydroperoxides burst and inducing ferroptosis to surmount therapy-resistant cancer. Theranostics, 9(21), 6209.

Silva, A.C., Maia, S. S. S., Coelho, M. D. F. B., Silva, R. C. P., & Candido, W. S. (2015). Medicinal plants used. In: Martins A, editor. Rio Grande do Norte, Brasil. Journal of Global Biosciences, 3195-3200.

Team R. C. (2014). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Retrieved from http://www.R-project.org/.

Waczuk, E. P., Kamdem, J. P., Abolaji, A. O., Meinerz, D. F., Bueno, D. C., Nascimento Gonzaga, T. K. S., Dorow, T. S. C., Boligon, A. A., Athayde, M. L., Rocha, J. B. T., & Ávila, D. S. (2015). Euphorbia tirucalli aqueous extract induces cytotoxicity, genotoxicity and changes in antioxidant gene expression in human leukocytes. Toxicology Research, 4(3), 739-748.

Wijayanti, N., Katz, N., & Immenschuh S. (2004). Biology of heme in health and disease. Current Medicinal Chemistry, 11(8), 981-6.

Publicado

06/11/2020

Cómo citar

LIMA, E. E. .; COSTA, A. R. .; ALMEIDA-BEZERRA, J. W.; SILVA, V. B. da .; MENEZES, S. A. de .; SILVA, F. S. H. da .; OLIVEIRA, M. G. de .; SANTOS, L. T. dos .; SANTOS, M. A. F. dos .; FIDELIS, K. R. .; CANDIDO, T. M. .; SOUZA, F. G. L. S. de .; LÔBO, G. de O. .; SILVA, N. C. da .; MOURA, J. C. de . Fitoquímica, potencial quelante y reductor del aceite esencial de Mesosphaerum suaveolens (L.) Kuntze (Lamiaceae). Research, Society and Development, [S. l.], v. 9, n. 11, p. e1099119333, 2020. DOI: 10.33448/rsd-v9i11.9333. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/9333. Acesso em: 1 jul. 2024.

Número

Sección

Ciencias Agrarias y Biológicas