Caracterización y estabilidad oxidativa del aceite y la harina de linaza parda (Linum usitatissimum L.)

Autores/as

DOI:

https://doi.org/10.33448/rsd-v9i10.9439

Palabras clave:

Ácido α-linolénico; Comida funcional; Compuestos fenólicos.

Resumen

La linaza (Linum usitatissimum L.) posee ácidos grasos poliinsaturados, fibras, compuestos fenólicos, antioxidantes y otras sustancias bioactivas, lo que le confiere estatus como alimento funcional. Este estudio tuvo como objetivo verificar la composición físico-química, la cantidad de compuestos fenólicos en la harina de linaza y la composición de ácidos grasos del aceite de esa harina. La harina de linaza se caracterizó por su humedad, cenizas, proteínas, lípidos, carbohidratos, valor calórico y compuestos fenólicos. De esta harina se extrajo el aceite, que se analizó en un cromatógrafo para determinar sus ácidos grasos. La harina de linaza mostró 4.85% de humedad, 3.28% de cenizas, 17.56 de proteína, 41.31% de lípidos, 33.0% de carbohidratos, 574.03 calorías y 211.53 mg EAG / 100g de Compuestos fenólicos. El cromatograma de aceite de linaza mostró predominio de ácidos grasos insaturados (95,1%), siendo la concentración más alta el ácido linolénico (C18: 3 - 53,58%), seguido del ácido oleico (C18: 1 - 25,98%) ), linoleico (C18: 2 - 15,54%) y, en menor medida, esteárico saturado (C18: 0 - 4,24%) y palmítico (C16: 0 - 0,66%). El período de inducción (PI) del aceite de linaza se redujo al aumentar la temperatura, mostrando que temperaturas más altas (110 ° C y 120 ° C) promovieron una menor estabilidad oxidativa de este aceite. Debido a los resultados obtenidos, se sugiere observar cómo conservar la harina y aceite de linaza y los productos que los contienen en su composición. Y evaluar el contenido de ácidos grasos poliinsaturados (PUFA) en productos adicionados con harina y aceite de linaza, especialmente aquellos sometidos a temperaturas superiores a 120 ° C, como en productos de panadería.

Citas

American Oil Chemists' Society - AOCS. (2005). Official methods and recommended practices of the AOCS. 5 ed. Champaign: AOCS.

Ankom. (2009). Technology method 2: rapid determination of oil/fat utilizing high temperature solvent extraction. Macedon, p. 2.

Association of Official Analytical Chemists - AOAC. (2005). Official Methods of analysis of AOAC International. 18. ed. Washington: AOAC.

Balasundram, N., Sundram, K., & Samman, S. (2006). Phenolic compounds in plant and agri-industrial byproducts: antioxidant activity, occurrence, and potential uses. Food Chemistry, 99(1), 191-203. doi: 10.1016/j.foodchem.2005.07.042.

Bañares, C., Martin, D., Reglero, G., & Torres, C. F. (2019). Protective effect of hydroxytyrosol and Rosemary extract in a comparative study of the oxidative stability of Echium oil. Food Chemistry, 290, 316-323. doi: 10.1016/j.foodchem.2019.03.141.

Barroso, A. K. M., Torres, A. G., Branco, V. N. C., Ferreira, A., Finotelli, P. V., Freitas, S. P., & Leão, M. H. M. da R. (2014). Brown and golden flaxeed: chemical and functional properties of the seeds and the cold-pressed oils. Ciência Rural, 44(1), 181-187. doi: 10.1590/S0103-84782014000100029.

Bligh, E. G., & Dyer, W. J. (1959). Arapid method of total lipid extracion and purification. The Canadian Journal of Biochemistry and Physiology, 37(8), 911-917. doi: 10.1139/o59-099.

Cini, J. R. de M., Borsato, D., Guedes, C. L. B., Silva, H. C. da, & Coppo, R. L. (2013). Comparação dos métodos de determinação da estabilidade oxidativa de biodiesel B100, em mistura com antioxidantes sintéticos: aplicação do delineamento simplex-centroide com variável de processo. Química Nova, 36(1), 79-84. doi: 10.1590/S0100-40422013000100015.

Costa, N. M. B., & Rosa, C. O. B. (2010). Alimentos funcionais: componentes bioativos e efeitos fisiológicos. Rio de Janeiro: Rubio.

De Ridder, D., Kroese, F., Evers, C., Adriaanse, M. & Gillebaart, M. (2017). Healthy diet:Health impact, prevalence, correlates, and interventions. Psychology and Health, 32(8), 907–941. doi: 10.1080/08870446.2017.1316849.

Edel, A., Aliani, M., & Pierce, G. N. (2015). Stability of bioactives in flaxseed and flaxseed-fortified foods. Food Research International, 77, 140-155. doi: 10.1016/j.foodres.2015.07.035.

European Committee for Standardization – ECS. (2003). Method EN 14112:2003: fat and oil derivatives - fatty acid methyl esters (FAME). Determination of oxidation stability (accelerated oxidation test). Berlin.

Gaspar, M. C. de M. P., Garcia, A. M., & Larrea-Killinger, C. (2020). How would you define healthy food? Social representations of Brazilian, French and Spanish dietitians and young laywomen. Appetite. 53, 104728. doi: 10.1016/j.appet.2020.104728.

Gomes, M. H. G., & Kurozawa, L. E. (2020). Improvement of the functional and antioxidant properties of rice protein by enzymatic hydrolysis for the microencapsulation of linseed oil. Journal of Food Engineering, 267, 10976. doi: 10.1016/j.jfoodeng.2019.109761.

Hartman L., & Lago R. C. A. (1973). Rapid preparation of fatty acid methyl ester from lipids. Laboratory Practice, 22, 475-476 passim. PMID: 4727126.

Illanes, A., & Guerrero, C. (2016). Chapter 2 – Functional foods and feeds: probiotics, prebiotics and synbiotics. In Illanes, A., Guerrero, C., Vera, C., Wilson, L., Conejeros, R., & Scott, F. (Editors). Lactose-Derived Prebiotics. Academic Press, p. 35-86, ISBN 9780128027240. doi: 10.1016/B978-0-12-802724-0.00002-0.35-86.

Institute of Medicine - IOM. (2005). Dietary Reference Intakes for energy, carbohydrate, fiber, fat, fatty acids, cholesterol, protein, and amino acids. Washington, DC: The National Academies Press. doi: 10.17226/10490.

Ishak, W. M. W., Katas, H., Yuen, N. P., Abdullah, M. A., & Zulfakar, M. H. (2019). Topical application of omega-3-, omega-6-, and omega-9-rich oil emulsions for cutaneous wound healing in rats. Drug Delivery and Translational Research, 9(2),418-433. doi: 10.1007/s13346-018-0522-8.

Kaur, M., Singh, V., & Kaur, R. 2017. Effect of partial replacement of wheat flour with varying levels of flaxseed flour on physicochemical, antioxidant and sensory characteristics of cookies. Bioactive Carbohydrates and Dietary Fibre, 9, 14-20. doi: 10.1016/j.bcdf.2016.12.002.

Kerrihard, A. L., Nagy, K., Craft, B. D., Beggio, M., & Pegg, R. B. (2015). Oxidative stability of commodity fats and oils: modeling based on fatty acid composition. Journal of the American Oil Chemists' Society, 92, 1153–1163. doi: 10.1007/s11746-015-2686-4.

Khattab, R. Y., & Zeitoun, M. A. (2013). Quality evaluation of flaxseed oil obtained by different extraction techniques. LWT – Food Science Technoogy., 53(1), 338–345. doi: 10.1016/j.lwt.2013.01.004.

Laidens, C. de P., Postaue, N., Stevanato, N., & Silva, C. da. (2019). Extração a baixa pressão do óleo de sementes de linhaça utilizando etanol como solvente. e-xacta, 12(2), 1-10. doi: 10.18674/exacta.v12i2.2736.

Lan, Y., Ohm, J.-B., Chen, B., & Rao, J. (2020). Physicochemical properties and aroma profiles of flaxseed proteins extracted from whole flaxseed and flaxseed meal. Food Hydrocolloids, 104, 105731. doi: 10.1016/j.foodhyd.2020.105731.

Michotte, D., Rogez, H., Chirinos, R., Mignolet, E., Campos, D., & Larondelle, Y. (2011). Linseed oil stabilisation with pure natural phenolic compounds. Food Chemistry, 129, 1228–1231. doi: 10.1016/j.foodchem.2011.05.108.

Morais, S. A. L. de, Aquino, F. J. T. de, Nascimento, E. A. do, Oliveira, G. S. de, Chang, R., Santos, N. C. dos, & Rosa, G. M. (2008). Análise de compostos bioativos, grupos ácidos e da atividade antioxidante do café arábica (Coffea arabica) do cerrado e de seus grãos defeituosos (PVA) submetidos a diferentes torras. Food Science and Technology, 28(Supp l.), 198-207. doi: 10.1590/S0101-20612008000500031.

Mueller, K., Eisner, P., Yoshie-Stark, Y., Nakada, R., & Kirchhoff, E. (2010). Functional properties and chemical composition of fractionated brown and yellow linseed meal (Linum usitatissimum L.). Journal of Food Engineering. 98, 453-460. doi: 10.1016/j.jfoodeng.2010.01.028.

Muñoz-González, I., Ruiz-Capillas, C., Salvador, M., & Herrero, A.M. (2021). Emulsion gels asdelivery systems for phenolic compounds: nutritional, technological and structural properties, Food Chemistry, 339, 128049. doi: 10.1016/j.foodchem.2020.128049.

Nandi, I., & Ghosh, M. (2015). Studies on functional and antioxidant property of dietary fibre extracted from defatted sesame husk, rice bran and flaxseed. Bioactive Carbohydrates and Dietary Fibre, 5(2), 129-136. doi: 10.1016/j.bcdf.2015.03.001.

Piva, G. S., Weschenfelder, T. A., Franceschi, E., Cansian, R., Paroul, N., & Steffens, C. (2018). Linseed (Linum usitatissimum) oil extraction using different solvents. Food Technology and Biotechnology, 56(3), 366-372. doi: 10.17113/ftb.56.03.18.5318.

Redondo-Cuevas, L., Castellano, G., Torrens, F., & Raikos, V. (2018). Revealing the relationship between vegetable oil composition and oxidative stability: a multifactorial approach. Journal of Food Composition and Analysis, 66, 221-229. doi: 10.1016/j.jfca.2017.12.027.

Rombaut, N., Savoire, R., Hecke, E. V., & Thomasset, B. (2017). Supercritical CO2 extraction of linseed: optimization by experimental design with regards to oil yield and composition. European Journal of Lipid Science and Technology, 119, 2-9. doi: 10.1002/ejlt.201600078.

Rubio, C., González-Wellera, D., Caballero, J. M., Romano, A. R., Paz, S., Hardisson, A., Gutiérrez, A., & J., Revert, C. (2018) Metals in food products with rising consumption (brewer’s yeast, wheatbran, oat bran, sesame seeds, flaxseeds, chia seed). A nutritional and toxicological evaluation. Journal of Functional Foods, 48, 558–565. doi: 10.1016/j.jff.2018.07.051.

Santos, F. L., Azeredo, V. B., Andrade, C. T., Marques, I. P., Romeiro, G. A., & Araújo, K. G. L. (2013). Efeito da adição de farinha de linhaça à dieta sobre a concentração de colesterol e ácidos graxos em camarões. Arquivo Brasileiro de Medicina Veterinária e Zootecnia, 65(3), 909-917. doi: 10.1590/S0102-09352013000300041.

Santos, R. C. (2010). O valor energético dos alimentos: exemplo de uma determinação experimental, usando calorimetria de combustão. Química Nova, 33(1), 220-224. doi: 10.1590/S0100-40422010000100038.

Setayeshgar, S., Ekwaru, J. P., Maximova, K., Majumdar, S. R., Storey, K. E., McGavock, J., & Veugelers, P. J. (2017). Dietary intake and prospective changes in cardiometabolic risk factors in children and youth. Applied Physiology, Nutrition, and Metabolism, 42(1): 39-45. doi: 10.1139/apnm-2016-0215.

Shim, Y. Y., Guia, B., Arnison, P. G., Wang, Y., Reaney, M. J. T. (2014). Flaxseed (Linum usitatissimum L.) bioactive compounds and peptide nomenclature: A review. Trends in Food Science & Technology, 38(1), 5-20. doi: 10.1016/j.tifs.2014.03.011.

Szydłowska-Czerniak, A., Tymczewska, A., Momot, M., & Włodarczyk, K. (2020). Optimization of the microwave treatment of linseed for cold-pressing linseed oil - Changes in its chemical and sensory qualities. LWT - Food Science and Technology, 126, 109317. doi: 10.1016/j.lwt.2020.109317.

Taylor, D. C., Smith, M. A., Fobert, P., Mietkiewska, E. & Weselake, R.J.(2011). Plant systems. Metabolic engineering of higher plants to pro-duce bio-industrial oils. In Moo-Young, M (Ed.). Comprehensive biotechnology (2nd Edition), 4, 67-85. Record identifier 65ef62b7-48ad-429f-9c05-3860098f6bd6. Hardcover ISBN: 9780444533524.

Tuncel, N. C., Uygur, A., & Yüceer, Y. K. (2017). The Effects of Infrared Roasting on HCN Content, Chemical Composition and Storage Stability of Flaxseed and Flaxseed Oil. Journal of the American Oil Chemists' Society, 94(6),1-8. doi: 10.1007/s11746-017-2982-2.

Wirkijowska, A., Zarzycki, P., Sobota, A., Nawrocka, A., Blicharz-Kania, A., & Andrejko, D. The possibility of using by-products from the flaxseed industry for functional bread production. LWT – Food Science and Technology, 118, 108860. doi: 10.1016/j.lwt.2019.108860.

Zou, X. G., Chen, X. L., Hu, J. N., Wang, Y. F., Gong, D. M., Zhu, X. M., & Deng, Z. Y. (2017). Comparisons of proximate compositions, fatty acids profile and micronutrients be-tween fiber and oil flaxseeds (Linum usitatissimum L.). Journal Food Composition and Analysis, 62,168–176. doi: 10.1016/j.jfca.2017.06.001.

Publicado

25/10/2020

Cómo citar

COSTA, C. S. da; PONTES, D. F.; MEDEIROS, S. R. A.; OLIVEIRA, M. N. de; HERCULANO, L. da F. L. .; FIGUEIREDO, F. C.; MEDEIROS, M. M. L. de; LEÃO, M. V. de S. Caracterización y estabilidad oxidativa del aceite y la harina de linaza parda (Linum usitatissimum L.). Research, Society and Development, [S. l.], v. 9, n. 10, p. e9179109439, 2020. DOI: 10.33448/rsd-v9i10.9439. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/9439. Acesso em: 6 jul. 2024.

Número

Sección

Ciencias Agrarias y Biológicas