Maceración de granos de Chenopodium quinoa Willd: efecto del tiempo y la temperatura

Autores/as

DOI:

https://doi.org/10.33448/rsd-v9i11.9483

Palabras clave:

Quinua; Caracterización físico-química; Absorción de agua.

Resumen

La quinua ha despertado el interés mundial por su alto valor nutricional, especialmente en relación al contenido de proteínas. Por tanto, el objetivo de este estudio fue evaluar el efecto del tiempo y la temperatura sobre la maceración de la quinua con el fin de obtener un mayor encharcamiento con menor pérdida de proteínas de grano. Para caracterizar los granos de quinua, el material se trituró y se sometió a análisis de humedad, proteínas, lípidos y cenizas. Para evaluar el tiempo y la temperatura, los granos se maceraron a tres temperaturas diferentes (5 °C, 25 °C y 45 °C) en una proporción de 1: 2 (quinua: agua) durante 48 horas. Las muestras del agua de maceración se sometieron a análisis de potencial de hidrógeno, determinación de proteínas, acidez y absorción de agua. El experimento se realizó en un Diseño de Parcela Subdivisión con la temperatura en la parcela (3 niveles - 5 °C, 25 °C y 45 °C) con tres repeticiones y el tiempo de maceración en la subparcela (9 niveles - 9 tiempos). Todos los análisis se realizaron por duplicado. En cuanto a los resultados obtenidos, la quinua puede considerarse un alimento con un alto contenido en proteínas (14,35%). Nótese que la migración de proteínas al agua de maceración es mayor a una temperatura de 45 °C. Los resultados para el comportamiento del pH y la acidez muestran que hubo fermentación a temperaturas de 25 y 45 °C. La ganancia de masa es independiente de la temperatura y alcanzó un punto máximo de anegamiento alrededor de las 16 horas. Por eso se recomienda macerar la quinua a una temperatura de 5 °C durante 16 horas.

Citas

Aceituno-Medina, M., Lopez-Rubio, A., Mendoza, S., Lagaron, J.M. (2013). Development of novel ultrathin structures based in amaranth (Amaranthus hypochondriacus) protein isolate through electrospinning. Food Hydrocolloids, 31, 289–298.

Amistá, M. J. M., Tavano, O. L. (2013). The effect of germination and heat treatment on the protein digestibility and trypsin inhibition activity of quinoa grains. Brazilian Journal of Food Technology, 16(1), 52-58.

Balbi, E. M., Oliveira, K., Chiquito, R. F. Análise da composição química e nutricional da quinoa. Visão Acadêmica, Curitiba, 15(2).

Benassi, V. T., Benassi, M. T., Prudencio, S. H. Cultivares brasileiras de soja: características para a produção de tofu e aceitação pelo mercado consumidor. Seminário: Ciências Agrárias, Londrina, v. 32, suplemento 1, 1901-1914, 2011.

Bewley, D. J., Bradford, K. J., Hilhorst, H. W. M., Nonogaki, H. (2013). Seeds: Physiology of Development, Germination and Dormancy. (3a ed.), Nova York, Springer.

Brakez, M., Daoud, S., Harrouni, M. C., Tachbibi, N., Brakez, Z. (2016). Nutritional value of Chenopodium quinoa seeds obtained from an open field culture under saline conditions. In Khan, M. A., Bilquees, M. O., Muhammad, G., Ahmed, Z. (Ed.), Halophytes for Food Security in Dry Lands, 37–47. Academic Press.

Brasil. Ministério da Saúde - MS. Agência Nacional de Vigilância Sanitária. Portaria nº 27, de 13 de janeiro de 1998. Regulamento Técnico referente à informação nutricional complementar. Diário Oficial da União, Brasília, 16 de janeiro de 1998.

Ciabotti, S., Barcellos, M. F. P., Mandarino, J. M. G., Tarone, A. G. (2006). Chemical and biochemical evaluation of grains, soymilk and tofus of normal soybean and lipoxygenase-free soybeans. Ciência e Agrotecnologia, 30(5), 920-929.

Fernandes, D. C., Souza, E. M. Naves, M. M. V. (2011). Soaking beans: alternative to improve nutritional value. Semina: Ciências Biológicas e da Saúde, 32(2), 177-184.

Fiorito, S., Preziuso, F., Epifano, F., Scotti, L., Bucciarelli, T., Taddeo, V.A., Genovese, S. (2019). Novel biologically active principles from spinach, goji and quinoa. Food Chemistry, 276, 262-265.

Föste, M., Elgeti, D., Brunner, A-K., Jekle, M., Becker, T. (2015). Isolation of quinoa protein by milling fractionation and solvent extraction. Food and Bioproducts Processing, 96, 20-26.

Gewehr, M. F. (2012). Análises químicas em flocos de quinoa: caracterização para a utilização em produtos alimentícios. Brazilian Journal of Food Technology, 15(4), 280-287.

Instituto Adolfo Lutz. Normas Analíticas do Instituto Adolfo Lutz. (4a ed.), São Paulo, 2008. 1020 p.

Itzhaki, R. F., Gill, D. M. (1964). A micro-biuret method for estimating proteins. Analytical Biochemistry, 9(4), 401 – 410.

Kanensi, O. J., Ochola, S., Gikonyo, N. K., Makokha, A. (2011). Optimization of the period of steeping and germination for amaranth grain. Journal of Agriculture and Food Technology, 1(6), 101–105.

Kuljanabhagavad, T., Thongphasuk, P., Chamulitrat, W., Wink, M. (2008). Triterpene saponins from Chenopodium quinoa Willd. Phytochemistry, 69(9), 1919-1926.

Küster, I., Vila, N. (2017). Health/Nutrition food claims and low-fat food purchase: Projected personality influence in young consumers. Journal of Functional Foods, 38, 66–76.

Li, G., Wang, S., Zhu, F. (2016). Physicochemical properties of quinoa starch. Carbohydrate Polymers, 137, 328–338.

Martinez, O. D. M., Toledo, R. C. L., Queiroz, V. A. V., Pirozi, M. R., Martino, H. S. D., Barros, F. A. R. (2020). Mixed sorghum and quinoa flour improves protein quality and increases antioxidant capacity in vivo. LWT - Food Science and Technology, 129, 109597.

Mota, C., Nascimento, A. C., Coelho, I., Gueifão, S., Santos, M., Torres, D., Castanheira, I. (2015). Estudos de caracterização do perfil nutricional da Quinoa (Chenopodium quinoa): macronutrientes, minerais e elementos vestigiais. Composição de Alimentos e Nutrição, [s.i.], 5(2), 30-32.

Mufari, J. R., Miranda-Villa, P. P., Calandri, E. L., (2018). Quinoa germ and starch separation by wet milling, performance and characterization of the fractions. LWT - Food Science and Technology, 96, 527-534.

Paz, P. C., Janny, R. J., Håkansson, Å. (2020). Safeguarding of quinoa beverage production by fermentation with Lactobacillus plantarum DSM 9843. International Journal of Food Microbiology, 324, 108630.

Pereira, E., Cadavez, V., Barros, L., Encina-Zelada, C., Stojković, D., Sokovic, M., Calhelha, R.C., Gonzales-Barron, U., Ferreira, I.C.F.R. (2020). Chenopodium quinoa Willd. (quinoa) grains: A good source of phenolic compounds. Food Research International, 137, 109574.

Pineli, L. L. O., Botelho, R. B. A., Zandonadi, R. P., Solorzano, J. L., Oliveira, G. T., Reis, C. E. G., Teixeira, D. S. (2015). Low glycemic index and increased protein content in a novel quinoa milk. LWT - Food Science and Technology, 63, 1261-1267.

Repo-Carrasco, R., Espinoza, C., Jacobsen, S. E. (2003). Nutritional value and use of the andean crops quinoa (Chenopodium quinoa) and kañiwa (Chenopodium pallidicaule). Food Reviews International, 19 (1–2), 179–189.

Salcedo-Chávez, B., Osuna-Castro, J. A., Guevara-Lara, F., Domínguez-Domínguez, J., Paredes-López, O. (2002). Optimization of the isoelectric precipitation method to obtain protein isolates from amaranth (Amaranthus cruentus) seeds. Journal of Agricultural and Food Chemistry, 50(22), 6515–6520.

Santos, H. V., Maia, C. J. S., Lima, E. J. F., Dias, A. C. C., Monteiro, R. S., Gandra, K. M. B., Cunha, L. R., Pereira, P. A. P. (2020). Physical, physicochemical, microbiological, and bioactive compounds stability of low-calorie orange jellies during storage: packaging effect. Research, Society and Development, 9(9), e759997900.

Shi, J., Xué, S. J., Mab, Y., Li, D., Kakuda, Y., Lan, Y. (2009). Kinetic study of saponins B stability in navy beans under different processing conditions. Journal of Food Engineering, 93(1), 59-65.

Solaesa, A. G., Villanueva, M., Vela, A. J., Ronda, F. (2020). Protein and lipid enrichment of quinoa (cv.Titicaca) by dry fractionation. Techno-functional, thermal and rheological properties of milling fractions. Food Hydrocolloids, 105, 105770.

Spehar, C. A. (2006). Adaptation of quinoa (Chenopodium quinoa Willd.) to increase the agricultural and alimentary diversity in Brazil. Cadernos de Ciência & Tecnologia, 23(1), 41-62.

Tang, Y., Tsao, R. (2017). Phytochemicals in quinoa and amaranth grains and their antioxidant, antiinflammatory, and potential health beneficial effects: a review. Molecular Nutrition & Food Research, 61(7), 1600767.

Van de Vondel, J., Lambrecht, M.A., Delcour, J.A. (2020). Osborne extractability and chromatographic separation of protein from quinoa (Chenopodium quinoa Willd.) wholemeal. LWT - Food Science and Technology, 126, 109321.

Vidueiros, S. M., Curti, R. N., Dyner, L. M., Binaghi, M. J., Peterson, G., Bertero, H. D., Pallaro, A. N. (2015). Diversity and interrelationships in nutritional traits in cultivated quinoa (Chenopodium quinoa Willd.) from Northwest Argentina. Journal of Cereal Science, 62, 87-93.

Vizzotto, M., Pereira, M. C. (2011). Blackberry (Rubus sp.): extraction process optimization and determination of phenolic compounds antioxidants. Revista Brasileira de Fruticultura, 33(4), 1209-1214.

Publicado

03/11/2020

Cómo citar

NEVES , Érica G. F. .; BARBOSA , J. C. .; PENNA, L. de O. .; NEVES , E. O. .; PEREIRA , . P. A. P. .; CUNHA , S. F. V. da .; VASCONCELOS, C. M. . Maceración de granos de Chenopodium quinoa Willd: efecto del tiempo y la temperatura. Research, Society and Development, [S. l.], v. 9, n. 11, p. e399119483, 2020. DOI: 10.33448/rsd-v9i11.9483. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/9483. Acesso em: 17 jul. 2024.

Número

Sección

Ciencias Agrarias y Biológicas