Aspectos tecnológicos y nutricionales de las barras alimenticias saladas desarrolladas con diferentes aglutinantes

Autores/as

DOI:

https://doi.org/10.33448/rsd-v9i11.9958

Palabras clave:

Goma de acácia; Barra de cereales; Fibra dietética; Colágeno hidrolizado; Almidón modificado.

Resumen

Las barras alimenticias saladas son una alternativa para conseguir reducir el consumo de azúcar. El desafío de crear este tipo de barra es reemplazar los aglutinantes de sabor dulce. Este estudio tuvo como objetivo evaluar los aspectos tecnológicos y nutricionales de las barras alimenticias saladas elaboradas con diferentes concentraciones de aglutinantes com bajas calorías (almidón modificado, colágeno hidrolizado y goma de acacia). Los ingredientes básicos (avena, linaza, soja, sésamo, quinua, tomate deshidratado, especias como ajo, cebolla y perejil deshidratado y NaCl) se agregaron a las soluciones de los aglutinantes. Las barras alimenticias  fueron analizadas con respecto a las propriedades química, física y físico-química. Los resultados mostraron que los tres aglutinantes probados mostraron viabilidad técnica de aglutinación de los ingredientes. Las barras alimenticias mostraron alto contenido de fibra dietética, bajo valor calórico y alto contenido de minerales (Fe, Zn, Mn y Mg). Las barras de cereales producidas con goma arábiga mostraron valores de textura más altos en relación al parámetro de masticabilidad, lo que tuvo una influencia positiva.

Citas

Ahmed A., Fedail, J. S., Musa, H. H., Musa, T. H. & Sifaldin, A. Z. (2016). Gum Arabic supplementation improved antioxidant status and alters expression of oxidative stress gene in ovary of mice fed high fat diet. Middle East Fertil. Soc. J. 21(2), 101-108.

Aigster A., Duncan S. E., Conforti, F. D. & Barbeau, W. E. (2011). Physicochemical properties and sensory attributes of resistant starch-supplemented granola bars and cereals. LWT-Food Sci Technol. 44, 2159-2165.

Ali A., Maqbool, M., Ramachandran, S. & Alderson, P. G. (2010). Gum arabic as a novel edible coating for enhancing shelf-life and improving postharvest quality of tomato (Solanum lycopersicum L.) fruit. Postharvest Biol Tec. 58, 42–47.

Ali, N. E. S., Elkarim, A. M. A., Fageer, A. S. H. M. & Nour, A. A. M. (2012). Physicochemical Characteristics of Some Acacia Gums. Int. J. Agric. Res. 7(8), 406-413.

Ayaz, N. O., Ramadan, K. S., Farid, H. E. A. & Alnahdi, H. S. (2017). Protective role and antioxidant activity of arabic gum against trichloroacetate-induced toxicity in liver of male rats. Indian J. Anim. Res. 51(2), 303-309.

AOAC - Association of Official Analytical Chemists (1997). Official methods of analysis of the Association of Official Analytical Chemist. (16a ed.), Washington.

AOAC - Association of Official Analytical Chemists (2005). Official methods of analysis of the Association of Official Analytical Chemist. (18a ed.), Washington.

Bampi, G., Backes, G. T., Cansian, R. L., Matos, F. E., Ansolin, I. M. A., Poleto, B. C., Corezzolla, L. R. & Favaro-Trindade, C. S. (2016). Spray Chilling microencapsulation of Lactobacillus acidophilus and Bifidobacterium animalis subsp. lactis and its use in the preparation of savory probiotic cereal bars. Food and Bioprocess Technology, 9(8), 1422-1428.

Bchir, B, Jean-François, T., Rabetafika, H. N. & Blecker, C. (2017). Effect of pear apple and date fibres incorporation on the physico-chemical, sensory, nutritional characteristics and the acceptability of cereal bars. Food sci technol int. 24(3), 198–208.

Bible, B. B. & Singha, S. (1997). Canopy position influences cielab coordinates of peach color. Hortscience. 28, 992-993.

Calame W., Thomassen, F., Hull, S., Viebke, C. & Siemensma, A. D. (2011). Evaluation of satiety enhancement, including compensation, by blends of gum arabic. A methodological approach. Appetite. 57:358–364.

Cruz-Requena, M., Aguilar-González, C. N., Prado-Barragan, L. A., da Cunha, M. G. C., Correia, M. T. S., Contreras-Esquivel, J. C. & Rodríguez-Herrera, R. (2016). Dietary fiber: An ingredient against obesity. Emir J Food Agr. 28(8), 522-530.

Damasceno, K. A., Gonçalves, C. A. A., Pereira, G. S., Costa, L. L., Campagnol, P. C. B., de Almeida, P. L. & Arantes-Pereira, L. (2016). Development of Cereal Bars Containing Pineapple Peel Flour (Ananas comosus L. Merril). J. Food Qual. 39(5), 417-424.

Fernstrand, A. M., Bury, D., Garssen, J. & Verster, J. C. (2017). Dietary intake of fibers: differential effects in men and women on perceivedgeneral health and immune functioning. J. Food Nutr. Res. 61(1), 1- 7.

Ferreira, D. F. (2011). Sisvar: a computer statistical analysis system. Ciênc Agrotec. 35(6), 1039-1042.

Goff, H. D. & Guo, Q. (2019). The Role of Hydrocolloids in the Development of Food Structure, in Handbook of Food Structure Development, 1-28.

Gómez-Guillén, M. C., Giménez, B., López-Caballero, M. E. & Montero, M. P. (2011). Functional and bioactive properties of collagen and gelatin from alternative sources: A review. Food Hydrocoll. 25, 1813-1827.

Hashim, P., Ridzwan, M., Bakar, J. & Hashim, D. (2015). Collagen in food and beverage industries. Int. Food Res. J. 22(1), 1 - 8.

IOM – Institute of Medicine (2005). Dietary reference intakes for energy, carbohydrate, fiber, fat, fatty acids, cholesterol, protein anda mino acids. Washington (DC): National Academic Press.

Kaur, R., Ahluwalia, P., Sachdev, P. A. & Kaur, A. (2018). Development of gluten-free cereal bar for gluten intolerant population by using quinoa as major ingrediente. Journal of Food Science and Technology. 55, 3584-3591.

King, D. E., Mainous, A. G. & Lambourne, C. A. (2012). Trends in diet-ary fiber intake in the United States, 1999-2008. J Acad Nutr Diet. 112(5), 642–648.

Lopez-Torrez, L, Nigen, M., Williams, P., Doco, T. & Sanchez, C. (2015). Acacia senegal vs. Acacia seyal gums e Part 1: Composition and structure of hyperbranched plant exudates. Food Hydrocoll. 51, 41-53.

Mahmood, K., Kamilah, H., Shang, P. L., Sulaiman, S., Ariffin, F. & Alias, A. K. (2017). A review: Interaction of starch/non-starch hydrocolloid blending and the recent food applications. Food Biosc. 19, 110–120.

Malavolta, E., Vitti, G. C. & Oliveira, S. A. (1997). Assessment of the nutritional status of plants - Principles and applications. (2a ed.),, Brazilian Potash and Phosphate Research Association.

Manickavasagan, A., Mathew, T. A., Al-Attabi, Z. H. & Al-Zakwan, A. M. (2013). Dates as a substitute for added sugar in traditional foods – A case study with idli. Emir. J. Food Agric. 25(11), 899-906.

Mikuš, L., Valík, L. & Dodok, L. (2011). Usage of Hydrocolloids in Cereal Technology. Acta Univ. Agric. et Silvic. Mendel. Brun. 35(5), 325-334.

Mohammad, A. W., Suhimi, N. M., Aziz, A. G. K. A. & Md Jahim, J. (2014). Process for Production of Hydrolysed Collagen from Agriculture Resources: Potential for Further Development. Res. J. Appl. Sci. 14(12), 1319-1323.

Nadeem, M, Rehman, S. U., Anjum, F. M., Murtaza, M. A. & Din, G. M. U. (2012). Development, Characterization, and Optimization of Protein Level in Date Bars Using Response Surface Methodology. Sci. World J. 1, 1-10.

Norajit, K., Gu, B. J. & Ryu, G. H. (2011). Effects of the addition of hemp powder on the physicochemical properties and energy bar qualities of extruded rice. Food Chem. 129:1919–1925.

Osborne, D. R. & Voogt. P. (1978). The analysis of nutrient in foods. London: Academic, 47, 156-158.

Padmashree, A., Sharma, G. K., Srihari, K. A. & Bawa, A. S. (2011). Development of shelf stable protein rich composite cereal bar. J Food Sci Technol. 49(3), 335–341.

Pallavi, B. V., Chetana, R., Ravi, R. & Reddy, S. Y. (2015). Moisture sorption curves of fruit and nut cereal bar prepared with sugar and sugar substitutes. Journal of Food Science and Technology, 52(3), 1663-1669.

Pereira A. S., Shitsuka, D. M, Parreira, F. J. & Shitsuka, R. (2018). Metodologia da pesquisa científica. [e-book]. Santa Maria. Ed. UAB / NTE / UFSM. Recuperado de https://repositorio.ufsm.br/bitstream/handle/1/15824/Lic_Computacao_Metodologia-Pesquisa-Cientifica.pdf?sequence=1.

Rawat, N. & Darappa, I. (2015). Effect of ingredients on rheological, nutritional and quality characteristics of fibre and protein enriched baked energy bars. J Food Sci Technol. 52(5), 3006–3013.

Rufino, M. S. M., Alves, R. E., Brito, E. S., de Morais, S. M., Sampaio, C. G., Pérez-Jiménez, J. & Saura-Calixto, F. D. (2007). Scientific methodology: determination of the total antioxidant activity in fruits by capturing the free radical DPPH. Brasília: EMBRAPA. Technical Communication, 128, 12.

Saha, D. & Bhattacharya, S. (2010). Hydrocolloids as thickening and gelling agents in food: a critical review. J Food Sci Technol . 47(6), 587–597.

Sampaio, C. R. P., Ferreira, S. M. R. & Brazaca, S. G. C. (2010). Physico-chemical characterization and composition of iron-fortified cereal bars. Alim. Nutr. 21, 607-616.

Sharma, M. & Mridula, D. (2015). Development and quality evaluation of maize-based fortified nutritious bar. Agric res. 4(1), 93–101.

Simoncello, B. A., Maia, C. J. S., Monteiro, R. S., Santos, O. D. H., Gandra, K. M. B. & Pereira, P. A. P. (2020). Evaluations of the Physical and Physicochemical Properties and Perception of Liking of Conventional and Low-Calorie Orange Jellies. JBFS. 7(3), 1-12.

Srebernich, S. M., Gonçalves, G. M. S., Ormenese, R. C. S. C. & Ruffi, C. R. G. (2016). Physico-chemical, sensory and nutritional characteristics of cereal bars with addition of acacia gum, inulin and sorbitol. Food Sci. Technol. 36 (3).

Su-Ah, J., Ahmed, M. & Eun, J. B. (2017). Physicochemical characteristics, textural properties, and sensory attributes of low‐calorie cereal bar enhanced with different levels of saccharin during storage. Journal of Food Processing and Preservation. 42 (2), e13486.

Sung, Y. Y., Kimb, S. H., Kima, D. S., Parka, S. H., Yooc, B. W. & Kim, H. K. (2014). Nutritional composition and anti-obesity effects of cereal bar containing Allium fistulosum (welsh onion) extract. J. Funct. Foods. 6, 428 – 437.

Szczesniak, A. S. (1963). Objective measurement of food texture. Food Sci. 28, 410–420.

Timm, T. G., de Lima, G. G., Matos, M., Magalhães, W. L. E., Tavares, L. B. B. & Helm, C. V. (2020). Nanosuspension of pinhão seed coat development for a new high-functional cereal bar. J Food Process Pres. e14464.

Tramujas, J. M., de Carli, C. G., do Prado, N. V., Lucchetta, L. & Tonial, I. B. (2017). Assessment of nutritional and lipid quality of salted cereal bars prepared with different binding agents. Rev. Chil. Nutr. 44(4), 350–359.

U.S. Department of Agriculture (2010). Dietary Reference Intake. Food and Nutrition Information Center.

U.S. Department of Health and Human Services and U.S. Department of Agriculture (2015). 2015 – 2020 Dietary Guidelines for Americans. (8a ed.),. Recuperado de https://health.gov/our-work/food-and-nutrition/2015-2020-dietary-guidelines/.

Wang, Y., Zhang, M. & Mujumdar, A. (2012). Mujumdar. Influence of green banana flour substitution for cassava starch on the nutrition, color, texture and sensory quality in two types of snacks. LWT. Food Sci Technol. 47:175-182.

Waterhouse, D. S., Teoh, A., Massarotto, C., Wibisono, R. & Wadhwa, S. (2010). Comparative analysis of fruit-based functional snack bars. Food Chem.119:1369–1379.

Zhu, F. (2018). Modifications of starch by electric field based techniques. Trends in Food Science and Technology. 75, 158-169.

Descargas

Publicado

05/12/2020

Cómo citar

HADDAD, F. F.; RIBEIRO, A. P. L.; PICININ, C. T. R.; PÍCCOLO, M. da P.; BARCELOS, M. de F. P. Aspectos tecnológicos y nutricionales de las barras alimenticias saladas desarrolladas con diferentes aglutinantes. Research, Society and Development, [S. l.], v. 9, n. 11, p. e8269119958, 2020. DOI: 10.33448/rsd-v9i11.9958. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/9958. Acesso em: 15 ene. 2025.

Número

Sección

Ciencias Agrarias y Biológicas