Actividad anti-micotoxina in vitro de probióticos (Bacillus spp) y microalgas (Chaetoceros gracilis) para aflatoxina B1 y ocratoxina A utilizadas para alimentar a Litopenaeus vannamei

Autores/as

DOI:

https://doi.org/10.33448/rsd-v9i11.9998

Palabras clave:

Adsorción; Degradación; Micotoxinas; Biotransformación; Cultivo de camarón.

Resumen

Objetivos: El objetivo de este trabajo fue evaluar in vitro la capacidad anti-micotoxina de dos probióticos comerciales constituidos por esporas de Bacillus spp - A1 y A2 y de la microalga Chaetoceros gracilis - A3 utilizadas en la alimentación de Litopenaeus vannamei para aflatoxina B1 (AFB1) y ocratoxina. A (OTA). La cantidad de probiótico se calculó para 10 L de agua. La cantidad de microalgas Chaetoceros gracilis se calculó según la cantidad utilizada en las granjas (12 x 104 células / mL). Se preparó un grupo con cinco microtubos de cada probiótico con pH 2.0 y otro grupo con pH 6.0 usando solución salina tamponada con fosfato (PBS) por duplicado para simular el pH del estómago y intestino de los camarones, respectivamente. Las concentraciones de probióticos utilizados fueron 0.0%; 25%; 50%; 75,% y 100% (0,0025 g; 0,005 g; 0,0075 g; 0,010 g) en cada tubo. Se utilizó la misma concentración de microalgas. La concentración de micotoxinas fue de 1.000 ng / mL. La actividad anti-micotoxina de A1, A2 y A3 para OTA y AFB1 se realizó mediante cromatografía líquida de alta resolución. Hubo una diferencia en la capacidad anti-micotoxina entre los probióticos probados para OTA y AFB1 con mayor eficiencia de A2. A3 no mostró actividad anti-micotoxina. En A1 y A2, la adsorción de OTA y AFB1 comenzó a partir de la concentración del 25%. La mitad de la OTA (513 ng / mL) se adsorbió usando A2 (concentraciones ≥ 50%) a pH 2.0 y A1 (concentraciones ≥75%) al mismo pH (400 ng / mL). Para AFB1, la mayor adsorción ocurrió en A2 (concentraciones ≥75%) a pH 2.0 (643 ng / mL) y pH 6.0 (672 ng / mL). El mayor efecto anti-micotoxinas de A1 solo ocurrió (concentraciones ≥ 50%) a pH 2.0 (481 ng / mL) y al 25% a pH 6.0 (592 ng / mL). Los probióticos compuestos por esporas de Bacillus spp tienen capacidad anti-micotoxina in vitro para AFB1 y OTA y la microalga Chaetoceros gracilis no mostró esta capacidad.

Citas

Bautista, M. N., Lavilla-Pitogo, C. R., Subosa, P. F., Begino, E. T., (1994). Aflatoxin B1 contamination of shrimp feeds and its effect on growth and hepatopancreas of pre-adult Penaeus monodon. Journal of Science Food Agriculture, 65 (01), 5–11.

Berger, C., (2000). Aportes de la biotecnología a la alimentación y a la imunoestimulación de camarones Penaeidos. In: Cruz-Suáres, L. E. et al. (Ed.). Avances en Nutrición Acuícola. Yucatán: Memores del V Simposium Internacional de Nutrición Acuícola, 1, 19-22.

Bintvihok, A., Ponpornpisit A., Tangtrongpiros, J., Panichkriangkrai, W., Rattanapanee, R., Doi K. and Kumagai, S., (2003). Aflatoxin contamination in shrimp feed and effects of aflatoxin addition to feed on shrimp production. Journal of Food Protection, 66(5), 882-5.

Boonyaratpalin, M., Supamattaya K., Verakunpiriya, V. and Suprasert, D., (2001). Effects of aflatoxin B1 on growth performance, blood components, immune function and histopathological changes in black tiger shrimp (Penaeus monodon Fabricius). Aquaculture Reseach, 32 (Suppl. 1), 388-398.

Brasil Portaria n 13, de 24 de maio de 2006, Institui o Grupo de Trabalho sobre Micotoxinas em produtos destinados à alimentação animal. Diário Oficial da União. Brasília-DF. Seção 2, p 6, 25 jan 2006.

Burgos-Hernández, A., Farias, S.I., Torres-Arreola, W. and Ezquerra-Brauer, J.M., (2005). In vitro studies of the effects of aflatoxin B1 and fumonisin B1 on trypsin-like and collagenase-like activity from the hepatopancreas of white shrimp (Litopenaeus vannamei). Aquaculture, 250 399– 410.

Calvet, R. M., Pereira, M. M. G., Torres, A. M., Costa, A. P. R., Muratori, M. C. S. Toxigenic mycobiota and mycotoxins in shrimp feed. Ciência Rural, Santa Maria, 45(6), 1021-1026.

Cardoso Filho, F. C., Calvet, R. M., Pereyra, C. M., Pereira, M. M. G., Rosa, C. A. R., Torres, A. M., Muratori, M. C. S., (2011). Ocorrência de Aspergillus spp., Penicillium spp. e aflatoxinas em amostras de farinha de milho utilizadas no consumo humano, Piauí, Brasil. Arquivos do Instituto Biológico, 78 (03), 443-447.

CAST, (2003). Mycotoxins – Risks in Plant, Animal and Human Systems, Task Force Report nº. 139, Council for Agricultural Science and Technology, Ames, Iowa, pp. 1–191.

Creppy, E. E. (2002) Update of survey, regulation and toxic effects of mycotoxins in Europe. Toxicology Letters 127, 19–28.

Decamp, O., & Moriarty, D. J. W. (2006). Probiotics as alternative to antimicrobials: limitations and potential. Journal of the World Aquaculture Society, 37(04), p. 60-62a.

Decamp, O., & Moriarty, D.J.W., 2006. Safety of Aquaculture Probiotics. Global Aquaculture Advocate, 4/5, 86-87b.

Divakaran, S., & Tacon, A. G. J. (2000). Studies on the toxicity of shrimp (Penaeus vannamei) fed diets Dosed with aflatoxin B1 to humans. Journal of Aquatic Food Product Technology, 9(03), 115-120.

Duarte, S. C., Lino, C. M., & Pena, A. (2011). Ochratoxin A in feed of food- producing animals: An undesirable mycotoxin with health and performance effects. Veterinary Microbiology, 154(2), 1–13.

El-Sayed, Y. S., Khalil, R. H., & Saad, T. T., (2009). Acute toxicity of ochratoxin-A in marine water-reared sea bass (Dicentrarchus labrax L.) Chemosphere 75, 878–882.

Gopinath, R., & Raj, R. P. (2009) Histological alterations in the hepatopancreas of Penaeus monodon Fabricius (1798) given aflatoxina B1 incorporated diets. Aquaculture Research, 40, 1235-1242.

Hai, N. N., (2006). Bacillus subtilis possibly used for aflatoxin control. Proceedings of International Workshop on Biotechnology in Agriculture. October 20-21.

Irianto, A., & Austin, B., 2002. Probiotics in aquaculture. Journal of Fish Disease, 25, 633–642.

Klich, M. A., (2007). Environmental and developmental factors infl uencing aflatoxin production by Aspergillus flavus and Aspergillus parasiticus. Mycoscience. 48, 71–80

Lightner, D. V., Redman, R. M., Price, R. L. & Wiseman, M. O., (1982). Histopathology of aflatoxicosis in the marine shrimp Penaeus stylirostris and P. vannamei. Journal of Invertebrate Pathology 40(02), 279-291.

MacDonald, S., Prickett, T. J., Wildey, K. B., & Chan, D. (2004). Survey of ochratoxin A and deoxynivalenol in stored grains from the 1999 harvest in the UK. Food Additives Contaminants. 2, 172–181.

Maeda, M. Microbial processes in Aquaculture. (1999). Biocreate Press, Tsukuba, Japan and Derby, UK. 5.

Mallmann, C. A., Dilkin, P., Giacomini, L. Z., & Rauber, R.H., (2006). Critérios para seleção de um bom sequestrante para micotoxinas. Anais. Conferência APINCO de Ciência e Tecnologia Avícolas, 213-224.

Moriarty, D. J. W., (1998). Control of luminous Vibrio species in Penaeid aquaculture ponds. Aquaculture, 164, 351-358.

Moriarty, D. J. W., (1999). Diseases Control in Shrimp Aquaculture with Probiotic Bacteria. Microbial Biosystems: New Frontiers Proceedings of the eighth International Symposium on Microbial Ecology. In: Bell, C. R., Brylinsky, M., Johnson-Green, P. (Ed.). Atlantic Canada Society for Microbial Ecology, Halifax, Canada.

Ochoa-Solano, J. L., & Olmos-Soto, J. (2006). The functional property of Bacillus for shrimp feeds. Aquaculture, 23, 519-525.

Ostrowski-Meissner, H. T., Leamaster, B. R., Duerr, E. O., Wlash, W. A. (1995). Sensitivity of the Pacific white shrimp, Penaeus vannamei, to aflatoxin B1. Aquaculture 131, 155 – 164. p. 12-16, 1985.

Pinheiro, R. E. E., Pereyra, C. M., Neves, J. A., Calvet, R. M., Santos, J. T. O., Lima, C. E., Alves, V. C., Muratori, M. C. S. Adsorção “in vitro” de ochratoxina a por probióticos utilizados na aquicultura. Acta Veterinaria Brasilica, 9(1), 59-64, 2015.

Pinheiro, R. E. E., Pereyra, C. M., Neves, J. A., Calvet, R. M., Santos, J. T. O., Lima, C. E., Alves, V. C., Pereira, M. M. G., Muratori, M. C. S. Avaliação in vitro da adsorção de aflatoxina B1 por produtos comerciais utilizados na alimentação animal. Arquivo do Instituto Biológico, v.84, 1-6, e0072015, 2017

Pitt, J. I., & Hocking, A. D. Fungi and Food Spoilage. (2009). (3a ed.) Springer Dordrecht Heidelberg London New York, 524p.

Rengpipat, S., Phianphak, W., Piyatiratitivorakul, S. and Menasveta, P. (1998) Effects of a probiotic bacterium on black tiger shrimp Penaeus monodon survival and growth. Aquaculture 167, 301–313.

Rengpipat, S., Rukpratanporn, S., Piyatiratitivorakul, S. and Menasaveta, P., (2000). Immunity enhancement in black tiger shrimp (Penaeus monodon) by a probiont bacterium (Bacillus S11). Aquaculture, 191, 271-288.

Samson R. A., Hoekstra E. S., Frisvad J. C., & Filtenborg O., (2001). Introduction to Food- and Airborne Fungi. Centraalbureau voor Schimmelcultures, Utrecht,The Netherlands. 389.

Scudamore, K., & Macdonald, S. (1998). A collaborative study of an HPLC method for determination of ochratoxin A in wheat using immunoaffinity column clean-up. Food Additives Contaminants 15, 401-410.

Silva, E. F., Soares, M. A., Calazans, N. F., Vogeley, J. L., Valle, B. C., Soares, R. & Peixoto, S., (2011). Effect of probiotic (Bacillus spp.) addition during larvae and postlarvae culture of the white shrimp Litopenaeus vannamei. Aquaculture Research, 1–9.

Tabbu, M. Y., (1997). Los efectos benéficos de un producto sobre químicos seleccionados y parâmetros de crecimiento en aguas de estanques de Penaeus monodon. In: World Aquaculture, 1997. Washington. Anais. Washington: World Aquaculture, 19-23.

Tapia-Salazar, M., García-Pérez, O. D., Nieto-López, M., Ricque-Marie, D., Villarreal-Cavazos, D., et al., (2010). Uso de secuestrantes para disminuir la toxicidad de micotoxinas en alimentos para acuacultura. Avances en Nutrición Acuícola X - Memorias del Décimo Simposio Internacional de Nutrición Acuícola, 8-10 de Noviembre, San Nicolás de los Garza, Novo León, México. pp. 514-546.

Trucksess, M. W., Stack, M. E., Nesheim, S., Albert, R. H., & Romer, T. R., (1994). Multifunctional column coupled with liquid chromatography for determination of aflatoxins B1, B2, G1, G2 in corn, almonds, Brazil nuts, peanuts and pistachionuts: collaborative study. J AOAC. Int 6, 1512-1521.

Taveira, J. A., & Mídio, A. F., (1999). Aflatoxina M1 – A micotoxina do leite. B Soc Bra C Tec Alim, 33 (01), 115-126.

Publicado

26/11/2020

Cómo citar

CALVET, R. M. .; NÓBREGA, M. M. G. P. .; COSTA, A. P. R. .; PEREYRA, C. M. .; MONTE, A. M.; MURATORI, M. C. S. Actividad anti-micotoxina in vitro de probióticos (Bacillus spp) y microalgas (Chaetoceros gracilis) para aflatoxina B1 y ocratoxina A utilizadas para alimentar a Litopenaeus vannamei. Research, Society and Development, [S. l.], v. 9, n. 11, p. e5499119998, 2020. DOI: 10.33448/rsd-v9i11.9998. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/9998. Acesso em: 17 jul. 2024.

Número

Sección

Ciencias Agrarias y Biológicas