Uma revisão sistemática de literatura sobre as estratégias e temáticas para ensino de estereoisomeria
DOI:
https://doi.org/10.33448/rsd-v9i11.10043Palavras-chave:
Estratégias de ensino; Alfabetização visual; Estereoquímica; Ensino; Contextualização.Resumo
Os obstáculos enfrentados na aprendizagem de estereoquímica englobam dificuldades relativas à visualização, problemas na aquisição e domínio de conceitos que são pré-requisitos para compreensão e diferenciação dos estereoisômeros. É importante destacar que aportes cognitivistas de aprendizagem consideram que o estudante aprende o que para ele tem significado; por esse motivo, a contextualização tem papel fundamental no processo de conceitualização. Este trabalho objetiva apresentar uma revisão sistemática de literatura sobre ensino de estereoisomeria buscando identificar estratégias e temáticas utilizadas. O método de busca consistiu na seleção de estudos publicados em periódicos nos últimos 20 anos, em português e espanhol, com Qualis A1 e A2 na área de ensino, além dos artigos da Química Nova na Escola. Foram incluídos os que contemplavam estereoisomeria em compostos orgânicos como tema central, apresentando estratégias ou temas para sua contextualização no ensino. Baseado na Análise de Conteúdo, o processo analítico dos dezesseis artigos selecionados a partir dos critérios resultou na criação das categorias: escopo do artigo, estratégias de ensino, recursos didáticos para visualização e temas utilizados. Os resultados indicam o foco na publicação de propostas de ensino, estratégias para desenvolvimento das habilidades visuais com uso de kits moleculares e aplicativos, e a temática fármacos sendo a mais utilizada para contextualização. Como síntese geral, constatamos o uso de recursos para alfabetização visual, além da contextualização que privilegia uma variedade de situações nas quais o conceito de estereoisomeria é aplicado, tendo o potencial de torná-lo significativo para os estudantes.
Referências
Acevedo Díaz, J. A. (1996) La tecnología en las relaciones CTS: una aproximación al tema. Enseñanza de las Ciencias, 14(1), 35-44.
Araújo, R. S., Malheiro, J. M., & Teixeira, O. P. (2015) Uma análise das analogias e metáforas utilizadas por um professor de química durante uma aula de isomeria óptica. Química Nova na Escola, 37(1), 19-26.
Bagatin, O., Simplício, F. I., Santin, S. M. O., & Santin Filho, O. (2005) Rotação de luz polarizada por moléculas quirais: uma abordagem histórica como proposta de trabalho em sala de aula. Química Nova na Escola, 21, 34-38.
Bardin, L. (2016) Análise de conteúdo. Edições 70.
Barreiro, E. J., Ferreira, V. F., & Costa, P. R. (1997). Substâncias enantiomericamente puras (SEP): a questão dos fármacos quirais. Química Nova, 20(6), 647-655.
Batista, B. M., Vasconcellos, P. S., Passos, C. G., & Pazinato, M. S. (2020). Teaching and learning Organic Chemistry in the view of High School teachers. Research, Society and Development, 9(7), e623974544.
Cardoso, P. S., Colinvaux, D. (2000) Explorando a motivação para estudar química. Química Nova, 23(3), 401-404.
Coelho, F. A. (2001) Fármacos e quiralidade. Cadernos Temáticos de Química Nova na Escola, 3, 23-32.
Colen, J. (2012) 17 anos de Química Nova na Escola: notas de alguém que a leu como estudante no ensino médio e no ensino superior com aspirações à docência. Química Nova na Escola, 34(1), 16-20.
Correia, M. E. A., de Freitas, J. C. R., de Freitas, J. J. R., & de Freitas Filho, J. R. (2010) Investigação do fenômeno de isomeria: concepções prévias dos estudantes do ensino médio e evolução conceitual. Ensaio Pesquisa em Educação em Ciências, 12(2), 83-100.
Correia, P. R. M., Donner Jr., J. W., & Infante-Malachias, M. E. (2008) Mapeamento conceitual como estratégia para romper fronteiras disciplinares: a isomeria nos sistemas biológicos. Ciência & Educação (Bauru), 14(3), 483-495
Da Silva, E. L., & Marcondes, M. E. R. (2010) Visões de contextualização de professores de química na elaboração de seus próprios materiais didáticos. Ensaio Pesquisa em Educação em
De Farias Ramos, A., & Serrano, A. (2013) Modelagem molecular no ensino de ciências: uma revisão da literatura no período 2001-2011 acerca da sua aplicabilidade em atividades de ensino. Acta Scientiae, 15(2), 363-382.
De Farias Ramos, A., & Serrano, A. (2015) Uma proposta para o ensino de estereoquímica cis/trans a partir de uma unidade de ensino potencialmente significativa (UEPS) e do uso de modelagem molecular. Experiências em Ensino de Ciências, 10(3), 94-106.
De Freitas Filho, J. R., de Freitas, J. C. R., da Silva, L. P., & de Melo, R. C. L. (2012) Brincoquímica: uma ferramenta lúdico-pedagógica para o ensino de Química Orgânica. In Anais do XVI ENEQ/X EDUQUI.
De Freitas Filho, J. R., Nascimento, Á., da Silva, A. C., & Lino, F. R. L. (2011) Medicamentos veterinários: contextualizando o ensino de Química Orgânica. Acta Scientiae, 13(2), 129-144.
De Melo, C. C., de Oliveira, R. C. B., & de Souza, A. N. (2019) Utilização de experimentação como aporte em atividades problematizadoras para a significação de conceitos químicos no Ensino Básico. Debates em Educação, 11(24), 84-105.
Delizoicov, D., Angotti, J. A., & Pernambuco, M. M. C. A. (2002) Ensino de Ciências: fundamentos e métodos. Cortez.
Diniz Júnior, A. I. D., & Silva, J. R. R. T. (2016) Isômeros, funções orgânicas e radicais livres: análise da aprendizagem de alunos do Ensino Médio segundo a abordagem CTS. Química Nova na Escola, 38(1), 60-69.
Esteban, S. (2008) Liebig–Wöhler controversy and the concept of isomerism. Journal of Chemical Education, 85(9), 1201.
Felipe, L. O., & Bicas, J. L. (2017) Terpenos, aromas e a química dos compostos naturais. Química Nova na Escola, 39(2), 120-130. http://qnesc.sbq.org.br/online/qnes c39_2/04-QS-09-16.pdf
Ferreira, M., & Del Pino, J. C. (2009) Estratégias para o ensino de química orgânica no nível médio: uma proposta curricular. Acta Scientiae, 11(1), 101-118.
França, A. (2005) Contextualização no ensino de química: visão dos professores da cidade de Sete Lagoas/MG (35 f.). Monografia de especialização em Ensino de Ciências, Faculdade de Educação da Universidade Federal de Minas Gerais, Belo Horizonte.
Gabel, D. L. (1993) Use of the particle nature of matter in developing conceptual understanding. Journal of Chemical Education, 70(3), 193.
Gilbert, J. K. (2008) Visualization: an emergent field of practice and enquiry in science education. In J. K. Gilbert, M. Reiner, & M. Nakhleh. Visualization: theory and practice in science education (pp. 3-24). Springer.
Gilbert, J. K., & Treagust, D. F. (2009) Towards a coherent model for macro, submicro and symbolic representations in chemical education. In J. K. Gilbert, & D. Treagust. Multiple representations in chemical education (pp. 333-350). Springer.
Graulich, N. (2015) The tip of the iceberg in organic chemistry classes: how do students deal with the invisible? Chemistry Education Research and Practice, 16(1), 9-21.
Hargittai, B., & Hargittai, I. (2012) Nobel Prize and structural chemistry II. Structural Chemistry, 23, 1-5.
Hortin, J. (1983) Visual literacy and visual thinking. In L. Burbank, & D. Pett. Contributions to the study of visual literacy (pp. 92-106). International Visual Literacy Association.
Kozma, R. B. (2003) The material features of multiple representations and their cognitive and social affordances for science understanding. Learning and instruction, 13(2), 205-226.
Kozma, R., & Russell, J. (2005) Multimedia learning of chemistry. In R. E. Mayer. The Cambridge handbook of multimedia learning (pp. 409-428). Cambridge University Press.
Krasilchik, M. (2000) Reformas e realidade: o caso do ensino das ciências. São Paulo em perspectiva, 14(1), 85-93.
Kurbanoglu, N. I., Taskesenligil, Y., & Sozbilir, M. (2006) Programmed instruction revisited: a study on teaching stereochemistry. Chemistry Education Research and Practice, 7(1), 13-21.
Laville, C., & Dionne, J. (1999) A construção do saber. Editora da UFMG.
Lima, V. L. E. (1997) Os fármacos e a quiralidade: uma breve abordagem. Química Nova, 20(6), 657-663.
Lin, Y. I., Son, J. Y., & Rudd, J. A. (2016) Asymmetric translation between multiple representations in chemistry. International Journal of Science Education, 38(4), 644-662.
Linenberger, K. J., & Holme, T. A. (2015) Biochemistry instructors’ views toward developing and assessing visual literacy in their courses. Journal of Chemical Education, 92(1), 23-31.
McNaught, A. D., & Wilkinson, A. (2019) The IUPAC Compendium of Chemical Terminology (2nd ed.). Blackwell Scientific Publications.
Milner-Bolotin, M., & Nashon, S. M. (2012) The essence of student visual-spatial literacy and
Mininel, F. J. (2009) Do senso comum à elaboração do conhecimento químico: uso de dispositivos didáticos para mediação pedagógica na prática educativa (248 f.). Dissertação de mestrado em Química, Universidade Estadual Paulista Júlio de Mesquita Filho, São Paulo.
Muenchen, C., & Delizoicov, D. (2014) Os três momentos pedagógicos e o contexto de produção do livro Física. Ciência & Educação (Bauru), 20(3), 617-638.
Pauletti, F., & Catelli, F. (2018) Um estudo de caso: programas computacionais mediando o ensino de isomeria geométrica. Revista Brasileira de Ensino de Ciência e Tecnologia, 11(1), 250-269.
Pauletti, F., Rosa, M. P. A., & Catelli, F. (2014) A importância da utilização de estratégias de ensino envolvendo os três níveis de representação da Química. Revista Brasileira de Ensino de Ciência e Tecnologia, 7(3), 121-134.
Pérez-Benítez, A. (2008) La equivalencia entre las paridades de los intercambios de dos sustituyentes y las reflexiones especulares, en la determinación de la quiralidad de átomos tetraédricos:¡Una demostración con espejos! Educación Química, 19(2), 146-151.
Pilli, R. A. (2001) Catálise assimétrica e o Prêmio Nobel de Química de 2001. Novos paradigmas e aplicações práticas. Química Nova na Escola, 14, 16-25.
Raupp, D. T., & Del Pino, J. C. (2015) Estereoquímica no Ensino Superior: historicidade e contextualização em livros didáticos de Química Orgânica. Acta Scientiae, 17(1), 146-168.
Raupp, D. T., Serrano, A., Martins, T. L. C., & Souza, B. C. D. (2010) Uso de um software
de construção de modelos moleculares no ensino de isomeria geométrica: um estudo de caso baseado na teoria de mediação cognitiva. Revista Electrónica de Enseñanza de las Ciencias, 9(1), 18-34.
Raupp, D. T., Procronow, T. R., Del Pino, J. C., & Andrade Neto, A. S. (2020) La capacidad de comprensión del campo conceptual de la estereoquímica: los desafíos que preceden a los problemas de visualización espacial. ACTIO, 5(1), 1-21.
Raupp, D. T., Prochnow, R. T., & Del Pino, J. C. (2020) História e contextualização no ensino de estereoquímica: uma proposta de abordagem para o ensino médio. Revista Contexto & Educação, 35(112), 432-455.
Rezende, G. A., Amauro, N. Q., & Rodrigues Filho, G. (2016) Desenhando isômeros ópticos. Conceitos Científicos em Destaque, 38, 133-140.
Roque, N. F., & Silva, J. L. P. (2008) A linguagem química e o ensino da química orgânica. Química Nova, 31(4), 921-923.
Rubilar, C. M. (2017) La estereoisomería en los libros de texto y el diseño de una secuencia de enseñanza y aprendizaje con realidad aumentada para promover la visualización. Enseñanza de las Ciencias: Revista de Investigación y Experiencias Didácticas, nº extra, 4461-4466.
Sampaio, R. F., & Mancini, M. C. (2007) Systematic review studies: a guide for careful
Santos, W. D., & Schnetzler, R. P. (1996) Função social: o que significa ensino de química para formar o cidadão. Química Nova na Escola, 4(4), 28-34.
Schönborn, K. J., & Anderson, T. R. (2006) The importance of visual literacy in the education of biochemists. Biochemistry and Molecular Biology Education, 34(2), 94-102.
Simões, J. E., Campos, A., & Marcelino, C. J. (2016) Abordando a isomeria em compostos orgânicos e inorgânicos: atividade fundamentada no uso de situações-problema na formação inicial de professores de Química. Investigações em Ensino de Ciências, 18(2), 327-46.
Sousa, R. D., Rocha, P. D. P., & Garcia, I. T. S. (2012) Estudo de caso em aulas de química: percepção dos estudantes de nível médio sobre o desenvolvimento de suas habilidades. Química Nova na Escola, 34(4), 220-228.
Stains, M., & Talanquer, V. (2007) A2: Element or compound? Journal of Chemical Education, 84(5), 880.
Stieff, M., Bateman, R. C., & Uttal, D. H. (2005) Teaching and learning with three-dimensional representations. In J. K. Gilbert. Visualization in science education (pp. 93-120). Springer.
Stokes, S. (2002) Visual literacy in teaching and learning: a literature perspective. Electronic Journal for the Integration of Technology in Education, 1(1), 10-19.
Terrell, C. R., Nickodem, K., Bates, A., Kersten, C., & Mernitz, H. (2020) Game‐based activities targeting visual literacy skills to increase understanding of biomolecule structure and function concepts in undergraduate biochemistry. Biochemistry and Molecular Biology Education (in press).
Treagust, D. F., Chandrasegaran, A. L., Zain, A. N., Ong, E. T., Karpudewan, M., & Halim, L. (2011) Evaluation of an intervention instructional program to facilitate understanding of basic particle concepts among students enrolled in several levels of study. Chemistry Education Research and Practice, 12(2), 251-261.
Treagust, D., Nieswandt, M., & Duit, R. (2000) Sources of students difficulties in learning chemistry. Educación Química, 11(2), 228-235.
Vergnaud, G. (1992) Conceptual fields, problem solving and intelligent computer tools. In Computer-based learning environments and problem solving (pp. 287-308). Springer.
Vergnaud, G. (1994) Le rôle de l’enseignant à la lumière des concepts de schème et de champ conceptuel. In Artigue, M. et al. Vingt ans de didactique des mathématiques en France (pp. 177-191). La Pensée Sauvage.
Wu, H. K., & Shah, P. (2004) Exploring visuospatial thinking in chemistry learning. Science Education, 88(3), 465-492. doi10.1002/sce.10126.
Wu, H. K., Krajcik, J. S., & Soloway, E. (2001) Promoting understanding of chemical representations: students' use of a visualization tool in the classroom. Journal of Research in Science Teaching, 38(7), 821-842.
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2020 Lara Colvero Rockenbach; Daniele Trajano Raupp; Danielle Prazeres Reppold; Carlos Eduardo Schnorr
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Autores que publicam nesta revista concordam com os seguintes termos:
1) Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
2) Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
3) Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado.