Indicações, materiais e propriedades da impressão 3D na odontologia: uma visão geral da literatura
DOI:
https://doi.org/10.33448/rsd-v9i11.10632Palavras-chave:
Impressão 3D; Materiais dentais; Odontologia; Precisão.Resumo
A impressão 3D e a tecnologia de manufatura digital têm sido de grande uso na odontologia nos últimos anos onde os dentistas e técnicos protéticos têm se atualizado e se envolvido no assunto, acompanhando o avanço da tecnologia. O objetivo do presente manuscrito foi realizar uma revisão descritiva da literatura, abordando os métodos de processamento, precisão, tipos de materiais utilizados e as aplicações da impressão 3D na odontologia. Foi realizada uma busca bibliográfica na base de dados de saúde PUBMED (www.pubmed.gov), na qual foram coletados estudos publicados de 2000 a 2020. Estudos de laboratório, relatos de casos, revisões sistemáticas e da literatura foram incluídos. Portanto, foram excluídos artigos que não abordassem o tema em questão, cartas ao editor, artigos de opinião, literatura duplicada e textos que não estivessem em inglês. De acordo com os critérios de inclusão e exclusão, foram selecionados 75 artigos de pesquisa. Na odontologia, os métodos mais comuns de impressão 3D usados são: estereolitografia (SLA), jateamento de material (MJ), jateamento de aglutinante e sinterização a laser. É importante considerar cuidadosamente a limitação de cada método, material e habilidade dos operadores em impressão 3D para essa tecnologia ser mais acessível na odontologia. Apesar disso, a precisão dos métodos e materiais de impressão utilizados nas diversas aplicações odontológicas com a impressão 3D têm melhorado cada vez mais, permitindo um fluxo de trabalho digital com maior aplicabilidade e frequência de uso na odontologia.
Referências
Abduo, J., Lyons, K., & Bennamoun, M. (2014). Trends in computer-aided manufacturing in prosthodontics: A review of the available streams. International Journal of Dentistry, 2014:783948, 15. https://doi.org/10.1155/2014/783948
Akova, T., Ucar, Y., Tukay, A., Balkaya, M. C., & Brantley, W. A. (2008). Comparison of the bond strength of laser-sintered and cast base metal dental alloys to porcelain. Dental Materials, 24(10), 1400–1404. https://doi.org/10.1016/j.dental.2008.03.001
Alharbi, N., Osman, R., & Wismeijer, D. (2016a). Effects of build direction on the mechanical properties of 3D-printed complete coverage interim dental restorations. Journal of Prosthetic Dentistry, 115(6), 760–767. https://doi.org/10.1016/j.prosdent.2015.12.002
Alharbi, N., Osman, R., & Wismeijer, D. (2016b). Factors Influencing the Dimensional Accuracy of 3D-Printed Full-Coverage Dental Restorations Using Stereolithography Technology. The International Journal of Prosthodontics, 29(5), 503–510. https://doi.org/10.11607/ijp.4835
Andonović, V., & Vrtanoski, G. (2010). Growing rapid prototyping as a technology in dental medicine, 29(1), 31–39. Retrieved from https://mesj.ukim.edu.mk/sites/default/files/Mech-Eng-29-1-2010.pdf#page=32
Aragón, M. L. C., Pontes, L. F., Bichara, L. M., Flores-Mir, C., & Normando, D. (2016). Validity and reliability of intraoral scanners compared to conventional gypsum models measurements: A systematic review. European Journal of Orthodontics, 38(4), 429–434. https://doi.org/10.1093/ejo/cjw033
American Society for Testing and Materials. (2009). ASTM 52900-15: standard terminology for additive manufacturing - general principles and terminology. West Conshohocken, PA: ASTM International.
Azari, A., & Nikzad, S. (2009). The evolution of rapid prototyping in dentistry: A review. Rapid Prototyping Journal, 15(3), 216–225. https://doi.org/10.1108/13552540910961946
Barazanchi, A., Li, K. C., Al-Amleh, B., Lyons, K., & Waddell, J. N. (2017). Additive Technology: Update on Current Materials and Applications in Dentistry. Journal of Prosthodontics, 26(2), 156–163. https://doi.org/10.1111/jopr.12510
Bibb, R., Eggbeer, D., & Williams, R. (2006). Rapid manufacture of removable partial denture frameworks. Rapid Prototyping Journal, 12(2), 95–99. https://doi.org/10.1108/13552540610652438
Birnbaum NS, A. H. (2008). Dental impressions using 3D digital scanners: virtual becomes reality. Compend Contin Educ Dent, 29(8), 494, 496, 498-505. Retrieved from https://pubmed.ncbi.nlm.nih.gov/18935788/
Borges, A. L. S., Dal Piva, A. M. D. O., Paes-Junior, T. J. D. A., & Tribst, J. P. M. (2020). Mouthguard Use Effect on the Biomechanical Response of an Ankylosed Maxillary Central Incisor during a Traumatic Impact: A 3-Dimensional Finite Element Analysis. Life, 10(11), 294. https://doi.org/10.3390/life10110294
Chang, S. L., Lo, C. H., & Jiang, C.-P. (2015). The Manufacture of Molar and Dental Bridge through 3D Printing. Applied Mechanics and Materials, 789–790, 1217–1222. https://doi.org/10.4028/www.scientific.net/amm.789-790.1217
Chen, H., Wang, H., Lv, P., Wang, Y., & Sun, Y. (2015). Quantitative evaluation of tissue surface adaption of CAD-designed and 3D printed wax pattern of maxillary complete denture. BioMed Research International, 2015:453968, p. 5 https://doi.org/10.1155/2015/453968
Chung, Y. J., Park, J. M., Kim, T. H., Ahn, J. S., Cha, H. S., & Lee, J. H. (2018). 3D printing of resin material for denture artificial teeth: Chipping and indirect tensile fracture resistance. Materials, 11(10), 1–13. https://doi.org/10.3390/ma11101798
Dawood, A., Marti, B. M., Sauret-Jackson, V., & Darwood, A. (2015). 3D printing in dentistry. British Dental Journal, 219(11), 521–529. https://doi.org/10.1038/sj.bdj.2015.914
Denry, I., & Kelly, J. R. (2014). Emerging ceramic-based materials for dentistry. Journal of Dental Research, 93(12), 1235–1242. https://doi.org/10.1177/0022034514553627
Ebert, J., Özkol, E., Zeichner, A., Uibel, K., Weiss, Ö., Koops, U., & Fischer, H. (2009). Direct inkjet printing of dental prostheses made of zirconia. Journal of Dental Research, 88(7), 673–676. https://doi.org/10.1177/0022034509339988
Eggbeer, D., Bibb, R., & Williams, R. (2005). The computer-aided design and rapid prototyping fabrication of removable partial denture frameworks. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 219(3), 195–202. https://doi.org/10.1243/095441105X9372
Ender, A., & Mehl, A. (2013). Accuracy of complete-Arch dental impressions: A new method of measuring trueness and precision. Journal of Prosthetic Dentistry, 109(2), 121–128. https://doi.org/10.1016/S0022-3913(13)60028-1
Fahad, M., Dickens, P., & Gilbert, M. (2013). Novel polymeric support materials for jetting based additive manufacturing processes. Rapid Prototyping Journal, 19(4), 230–239. https://doi.org/10.1108/13552541311323245
Goodacre, C. J., Garbacea, A., Naylor, W. P., Daher, T., Marchack, C. B., & Lowry, J. (2012). CAD/CAM fabricated complete dentures: Concepts and clinical methods of obtaining required morphological data. Journal of Prosthetic Dentistry, 107(1), 34–46. https://doi.org/10.1016/S0022-3913(12)60015-8
Groth, C., Kravitz, N. D., Jones, P. E., Graham, J. W., & Redmond, W. R. (2014). Three-dimensional printing technology. Journal of Clinical Orthodontics, 48(8), 475–485. Retrieved from http://www.kravitzorthodontics.com/assets/pdfs/3-Dimensional-Printing-Technology.pdf
Hada, T., Kanazawa, M., Iwaki, M., Arakida, T., Soeda, Y., Katheng, A., & Minakuchi, S. (2020). Effect of printing direction on the accuracy of 3D-printed dentures using stereolithography technology. Materials, 13(15), 1–12. https://doi.org/10.3390/ma13153405
Hatamleh, M. M., & Watson, J. (2013). Construction of an Implant-Retained Auricular Prosthesis with the Aid of Contemporary Digital Technologies: A Clinical Report. Journal of Prosthodontics, 22(2), 132–136. https://doi.org/10.1111/j.1532-849X.2012.00916.x
Hoang, L. N., Thompson, G. A., Cho, S. H., Berzins, D. W., & Ahn, K. W. (2015). Die spacer thickness reproduction for central incisor crown fabrication with combined computer-aided design and 3D printing technology: An in vitro study. Journal of Prosthetic Dentistry, 113(5), 398–404. https://doi.org/10.1016/j.prosdent.2014.11.004
Homsy, F. R., Özcan, M., Khoury, M., & Majzoub, Z. A. K. (2018). Marginal and internal fit of pressed lithium disilicate inlays fabricated with milling, 3D printing, and conventional technologies. Journal of Prosthetic Dentistry, 119(5), 783–790. https://doi.org/10.1016/j.prosdent.2017.07.025
Huang, H. L., Hsu, J. T., Fuh, L. J., Lin, D. J., & Chen, M. Y. C. (2010). Biomechanical simulation of various surface roughnesses and geometric designs on an immediately loaded dental implant. Computers in Biology and Medicine, 40(5), 525–532. https://doi.org/10.1016/j.compbiomed.2010.03.008
Huang, Z., Zhang, L., Zhu, J., & Zhang, X. (2015). Clinical marginal and internal fit of metal ceramic crowns fabricated with a selective laser melting technology. Journal of Prosthetic Dentistry, 113(6), 623–627. https://doi.org/10.1016/j.prosdent.2014.10.012
Inokoshi, M., Kanazawa, M., & Minakuchi, S. (2012). Evaluation of a complete denture trial method applying rapid prototyping. Dental Materials Journal, 31(1), 40–46. https://doi.org/10.4012/dmj.2011-113
Jang, Y., Sim, J. Y., Park, J. K., Kim, W. C., Kim, H. Y., & Kim, J. H. (2020). Accuracy of 3-unit fixed dental prostheses fabricated on 3D-printed casts. Journal of Prosthetic Dentistry, 123(1), 135–142. https://doi.org/10.1016/j.prosdent.2018.11.004
Kanazawa, M., Inokoshi, M., Minakuchi, S., & Ohbayashi, N. (2011). Trial of a CAD/CAM system for fabricating complete dentures. Dental Materials Journal, 30(1), 93–96. https://doi.org/10.4012/dmj.2010-112
Katase, H., Kanazawa, M., Inokoshi, M., & Minakuchi, S. (2013). Face simulation system for complete dentures by applying rapid prototyping. Journal of Prosthetic Dentistry, 109(6), 353–360. https://doi.org/10.1016/S0022-3913(13)60316-9
Katkar, R. A., Taft, R. M., & Grant, G. T. (2018). 3D Volume Rendering and 3D Printing (Additive Manufacturing). Dental Clinics of North America, 62(3), 393–402. https://doi.org/10.1016/j.cden.2018.03.003
Kattadiyil, M. T., Goodacre, C. J., Baba, N. Z. (2013). CAD/CAM complete dentures: A review of two commercial fabrication systems. J. Calif. Dent. Assoc, (41), 407–416. Retrieved from https://pubmed.ncbi.nlm.nih.gov/23875432/
Keating, A. P., Knox, J., Bibb, R., & Zhurov, A. I. (2008). A comparison of plaster, digital and reconstructed study model accuracy. Journal of Orthodontics, 35(3), 191–201. https://doi.org/10.1179/146531207225022626
Kessler, A., Hickel, R., & Reymus, M. (2019). 3D Printing in Dentistry — State of the Art, 45(1), 30–40. https://doi.org/http://doi.org/10.2341/18-229-L
Kim, T. H., Varjao, F. (2016). 3D printed complete dentures. Quintessence Dent. Technol, (39), 141–149. Retrieved from https://scholar.google.com/scholar?hl=es&as _sdt=0%2C5&q=Kim%2C+T.H.%3B+Varjao%2C+F.+%282016%29.+3D+printed+complete+dentures.+Quintessence+Dent.+Technol%2C+%2839%29%2C+141%E2%80%93149.&btnG=
Kim, K. B., Kim, W. C., Kim, H. Y., & Kim, J. H. (2013). An evaluation of marginal fit of three-unit fixed dental prostheses fabricated by direct metal laser sintering system. Dental Materials, 29(7), e91–e96. https://doi.org/10.1016/j.dental.2013.04.007
Krar S, G. A. (2003). Exploring Advanced Manufacturing Technology. New York, Industrial Press Inc, 721.
Lal, K., White, G. S., Morea, D. N., & Wright, R. F. (2006). Use of stereolithographic templates for surgical and prosthodontic implant planning and placement. Part I. The concept. Journal of Prosthodontics, 15(1), 51–58. https://doi.org/10.1111/j.1532-849X.2006.00069.x
Liu, Q., Leu, M. C., & Schmitt, S. M. (2006). Rapid prototyping in dentistry: Technology and application. International Journal of Advanced Manufacturing Technology, 29(3–4), 317–335. https://doi.org/10.1007/s00170-005-2523-2
Maeda, Y., Mitioura, M., Tsutsum, S., Tsumi, T., Okad, M., & Nokub, T. (1994). A CAD / CAM System for Removable Denture . Part I : Fabrication of Complete Dentures. The International Journal of Prosthodontics, 7(1), 17–22. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/8179777
Masood, S. H., Rattanawong, W., & Iovenitti, P. (2003). A generic algorithm for a best part orientation system for complex parts in rapid prototyping. Journal of Materials Processing Technology, 139(1-3 SPEC), 110–116. https://doi.org/10.1016/S0924-0136(03)00190-0
Melchels, F. P. W., Feijen, J., & Grijpma, D. W. (2010). A review on stereolithography and its applications in biomedical engineering. Biomaterials, 31(24), 6121–6130. https://doi.org/10.1016/j.biomaterials.2010.04.050
Melo Filho, A. B., Tribst, J. P. M., Ramos, N. C., Luz, J. N., Jardini, M. A. N.,
Borges, A. L. S., Santamaria, M.P., & Melo, R.M. (2019). Failure Probability, Stress Distribution and Fracture Analysis of Experimental Screw for Micro Conical Abutment. Brazilian Dental Journal, 30(2):157-163. doi: 10.1590/0103-6440201902401.
Mitteramskogler, G., Gmeiner, R., Felzmann, R., Gruber, S., Hofstetter, C., Stampfl, J., … Laubersheimer, J. (2014). Light curing strategies for lithography-based additive manufacturing of customized ceramics. Additive Manufacturing, 1, 110–118. https://doi.org/10.1016/j.addma.2014.08.003
Örtorp, A., Jönsson, D., Mouhsen, A., & Vult Von Steyern, P. (2011). The fit of cobalt-chromium three-unit fixed dental prostheses fabricated with four different techniques: A comparative in vitro study. Dental Materials, 27(4), 356–363. https://doi.org/10.1016/j.dental.2010.11.015
Osman, R., Alharbi, N., & Wismeijer, D. (2017). Build Angle: Does It Influence the Accuracy of 3D-Printed Dental Restorations Using Digital Light-Processing Technology? The International Journal of Prosthodontics, 30(2), 182–188. https://doi.org/10.11607/ijp.5117
Park, M. E., & Shin, S. Y. (2018). Three-dimensional comparative study on the accuracy and reproducibility of dental casts fabricated by 3D printers. Journal of Prosthetic Dentistry, 119(5), 861.e1-861.e7. https://doi.org/10.1016/j.prosdent.2017.08.020
Pereira, S. P., Shitsuka, D. M., Parreira, F. J., & Shitsuka, R. (2018). Metodologia da pesquisa científica. Santa Maria, RS: UFSM, NTE. Rtrived from https://repositorio.ufsm.br/bitstream/handle/1/15824/Lic_Computacao_Metodologia-Pesquisa-Cientifica.pdf?sequence=1
Pereyra, N. M., Marano, J., Subramanian, G., Quek, S., Leff, D. (2015). Comparison of Patient Satisfaction in the Fabrication of Conventional Dentures vs. DENTCA (CAD/CAM) Dentures: A Case Report. J. N. J. Dent. Assoc., (86), 26–33. Retrieved from https://scholar.google.com/scholar?hl=es&as_sdt=0%2C5&q=Comparison+of+Patient+Satisfaction+in+the+Fabrication+of+Conventional+Dentures+vs.+DENTCA+%28CAD%2FCAM%29+Dentures%3A+A+Case+Repor&btnG=
Pompa, G., Di Carlo, S., De Angelis, F., Cristalli, M. P., & Annibali, S. (2015). Comparison of Conventional Methods and Laser-Assisted Rapid Prototyping for Manufacturing Fixed Dental Prostheses: An in Vitro Study. BioMed Research International, 2015. https://doi.org/10.1155/2015/318097
Puebla, K., Arcaute, K., Quintana, R., & Wicker, R. B. (2012). Effects of environmental conditions, aging, and build orientations on the mechanical properties of ASTM type i specimens manufactured via stereolithography. Rapid Prototyping Journal, 18(5), 374–388. https://doi.org/10.1108/13552541211250373
Quante, K., Ludwig, K., & Kern, M. (2008). Marginal and internal fit of metal-ceramic crowns fabricated with a new laser melting technology. Dental Materials, 24(10), 1311–1315. https://doi.org/10.1016/j.dental.2008.02.011
Revilla-León, M., Gonzalez-Martín, Ó., Pérez López, J., Sánchez-Rubio, J. L., & Özcan, M. (2018). Position Accuracy of Implant Analogs on 3D Printed Polymer versus Conventional Dental Stone Casts Measured Using a Coordinate Measuring Machine. Journal of Prosthodontics, 27(6), 560–567. https://doi.org/10.1111/jopr.12708
Revilla-León, M., & Özcan, M. (2019). Additive Manufacturing Technologies Used for Processing Polymers: Current Status and Potential Application in Prosthetic Dentistry. Journal of Prosthodontics, 28(2), 146–158. https://doi.org/10.1111/jopr.12801
Revilla-León, Marta, and Mutlu Özcan. "Additive manufacturing technologies used for 3D metal printing in dentistry." Current Oral Health Reports 4.3 (2017): 201-208.
Revilla-León, Marta, Mehrad Sadeghpour, and Mutlu Özcan. "An update on applications of 3D printing technologies used for processing polymers used in implant dentistry." Odontology 108.3 (2020): 331-338.
Sancho-Puchades, M., Fehmer, V., Hämmerle, C., Dent, M., & Sailer, I. (2015). Advanced smile diagnostics using CAD/CAM mock-ups. The European Journal of Esthetic Dentistry, 10, 374–391. Retrieved from http://www.quintpub.com/userhome/ejed/ejed_10 _3_sanchopuchades_p374.pdf
S
him, J. S., Kim, J. E., Jeong, S. H., Choi, Y. J., & Ryu, J. J. (2020). Printing accuracy, mechanical properties, surface characteristics, and microbial adhesion of 3D-printed resins with various printing orientations. Journal of Prosthetic Dentistry, 124(4), 468–475. https://doi.org/10.1016/j.prosdent.2019.05.034
Silva, N. R. F. A., Witek, L., Coelho, P. G., Thompson, V. P., Rekow, E. D., & Smay, J. (2011). Additive CAD/CAM process for dental prostheses. Journal of Prosthodontics, 20(2), 93–96. https://doi.org/10.1111/j.1532-849X.2010.00623.x
Stansbury, J. W., & Idacavage, M. J. (2016). 3D printing with polymers: Challenges among expanding options and opportunities. Dental Materials, 32(1), 54–64. https://doi.org/10.1016/j.dental.2015.09.018
Strub, J. R., Rekow, E. D., & Witkowski, S. (2006). Computer-aided design and fabrication of dental restorations: Current systems and future possibilities. Journal of the American Dental Association, 137(9), 1289–1296. https://doi.org/10.14219/jada.archive.2006.0389
Sun, Y., Lü, P., & Wang, Y. (2009). Study on CAD&RP for removable complete denture. Computer Methods and Programs in Biomedicine, 93(3), 266–272. https://doi.org/10.1016/j.cmpb.2008.10.003
Tahayeri, A., Morgan, M. C., Fugolin, A. P., Bompolaki, D., Athirasala, A., Pfeifer, C. S., … Bertassoni, L. E. (2018). 3D printed versus conventionally cured provisional crown and bridge dental materials. Dental Materials, 34(2), 192–200. https://doi.org/10.1016/j.dental.2017.10.003
Tamay, D. G., Usal, T. D., Alagoz, A. S., Yucel, D., Hasirci, N., & Hasirci, V. (2019). 3D and 4D printing of polymers for tissue engineering applications. Frontiers in Bioengineering and Biotechnology, 7(JUL). https://doi.org/10.3389/fbioe.2019.00164
Tymrak, B. M., Kreiger, M., & Pearce, J. M. (2014). Mechanical properties of components fabricated with open-source 3-D printers under realistic environmental conditions. Materials and Design, 58, 242–246. https://doi.org/10.1016/j.matdes.2014.02.038
Ucar, Y., Akova, T., Akyil, M. S., & Brantley, W. A. (2009). Internal fit evaluation of crowns prepared using a new dental crown fabrication technique: Laser-sintered Co-Cr crowns. Journal of Prosthetic Dentistry, 102(4), 253–259. https://doi.org/10.1016/S0022-3913(09)60165-7
Urrios, A., Parra-Cabrera, C., Bhattacharjee, N., Gonzalez-Suarez, A. M., Rigat-Brugarolas, L. G., Nallapatti, U., & Folch, A. (2016). 3D-printing of transparent bio-microfluidic devices in PEG-DA. Lab on a Chip, 16(12), 2287–2294. https://doi.org/10.1039/c6lc00153j
Van Noort, R. (2012). The future of dental devices is digital. Dental Materials, 28(1), 3–12. https://doi.org/10.1016/j.dental.2011.10.014
Vandenbroucke, B., & Kruth, J.-P. (2007). Selective Laser Melting of Biocompatible Metals for Rapid. Rapid Prototyping Journal, 13(4), 148–159.
Vasques, M. T., Mori, M., & Laganá, D. C. (2020). Three-dimensional printing of occlusal devices for temporomandibular disorders by using a free CAD software program: A technical report. Journal of Prosthetic Dentistry, 123(2), 232–235. https://doi.org/10.1016/j.prosdent.2018.12.017
Villefort, R. F., Tribst, J., Dal Piva, A., Borges, A. L., Binda, N. C., Ferreira, C., Bottino, M. A., & von Zeidler, S. (2020). Stress distribution on different bar materials in implant-retained palatal obturator. PloS one, 15(10), e0241589. https://doi.org/10.1371/journal.pone.0241589
Wang, J., Shaw, L. L., & Cameron, T. B. (2006). Solid freeform fabrication of permanent dental restorations via slurry micro-extrusion. Journal of the American Ceramic Society, 89(1), 346–349. https://doi.org/10.1111/j.1551-2916.2005.00672.x
Williams, R. J., Bibb, R., Eggbeer, D., & Collis, J. (2006). Use of CAD/CAM technology to fabricate a removable partial denture framework. Journal of Prosthetic Dentistry, 96(2), 96–99. https://doi.org/10.1016/j.prosdent.2006.05.029
Wu, J., Wang, X., Zhao, X., Zhang, C., & Gao, B. (2012). A study on the fabrication method of removable partial denture framework by computer-aided design and rapid prototyping. Rapid Prototyping Journal, 18(4), 318–323. https://doi.org/10.1108/13552541211231743
Yao, H., Wang, J., & Mi, S. (2017). Photo processing for biomedical hydrogels design and functionality: A review. Polymers, 10(1), 1–27. https://doi.org/10.3390/polym10010011
Yeung, M., Abdulmajeed, A., Carrico, C. K., Deeb, G. R., & Bencharit, S. (2020). Accuracy and precision of 3D-printed implant surgical guides with different implant systems: An in vitro study. Journal of Prosthetic Dentistry, 123(6), 821–828. https://doi.org/10.1016/j.prosdent.2019.05.027
Zhang, Y. De, Jiang, J. G., Liang, T., & Hu, W. P. (2011). Kinematics modeling and experimentation of the multi-manipulator tooth-arrangement robot for full denture manufacturing. Journal of Medical Systems, 35(6), 1421–1429. https://doi.org/10.1007/s10916-009-9419-x
Zhang, Z. chen, Li, P. lun, Chu, F. ting, & Shen, G. (2019). Influence of the three-dimensional printing technique and printing layer thickness on model accuracy. Journal of Orofacial Orthopedics, 80(4), 194–204. https://doi.org/10.1007/s00056-019-00180-y
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2020 Laura Viviana Calvache Arcila; Nathália de Carvalho Ramos; Marco Antonio Bottino; João Paulo Mendes Tribst
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Autores que publicam nesta revista concordam com os seguintes termos:
1) Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
2) Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
3) Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado.