Do descarte ao desenvolvimento sustentável: potencial tecnológico de blendas de poli(ácido lático) (PLA) com resíduos de filamentos 3D
DOI:
https://doi.org/10.33448/rsd-v9i12.10767Palavras-chave:
Filamentos 3D; Resíduos; Reaproveitamento; Poli(ácido lático) - PLA; Blendas poliméricas.Resumo
A manufatura aditiva está crescendo de forma acelerada para a fabricação de peças nas indústrias automotiva, médica e aeroespacial. Porém, há um crescente aumento no teor de resíduos gerados pelos filamentos 3D e, portanto, a prática do reaproveitamento torna-se importante, uma vez traz ganhos ambientais e econômicos. A presente pesquisa avaliou as propriedades mecânicas, térmicas, termomecânicas e reológicas de blendas de PLA/PLAr pós-consumo de filamentos 3D. As blendas foram preparadas em uma extrusora de rosca dupla corrotacional e, posteriormente, os grânulos extrudados foram moldados por injeção. À medida que aumentou o teor de PLAr nas blendas (PLA/PLAr) houve uma redução na viscosidade, indicando um melhoramento na processabilidade. A blenda PLA/PLAr (75/25 % em massa) aumentou o grau de cristalinidade em comparação ao PLA virgem, indicando que o PLAr atuou como agente nucleante. Como consequência, a blenda PLA/PLAr (75/25 % em massa) apresentou desempenho equiparável ao PLA puro na estabilidade térmica, módulo elástico, resistência à tração, dureza Shore D, resistência ao impacto, temperatura de deflexão térmica (HDT) e temperatura de amolecimento Vicat. O reaproveitamento do PLA pós-consumo de filamentos 3D é viável para o desenvolvimento de materiais com boas propriedades. Além disso, agrega-se valor ao material pós-consumo e contribuindo para o desenvolvimento sustentável.
Referências
Araújo, J. P.; Agrawal, P.; & Mélo, T. J. A. (2015). Blendas PLA/PEgAA: Avaliação da reatividade entre os polímeros e da concentração de PEgAA nas propriedades e na morfologia. Revista Eletrônica de Materiais e Processos, 10(3): 118–127.
Araújo, L. M. G.; & Morales, A. R. (2018). Compatibilization of recycled polypropylene and recycled poly (ethylene terephthalate) blends with SEBS-g-MA. Polímeros, 28(1), 84-91.
Andrade, M. F. C.; Souza, P. M. S.; Cavalett, O.; & Morales, A. (2016). Life cycle assessment of poly(lactic acid) (PLA): comparison between chemical recycling, mechanical recycling and composting. Journal of Polymers and the Environment, 24(7): 372–384.
Aishah, N.; Bijarimi, M.; Moshiul, A. K. M.; Desa, M. S. Z. M.; Norazmi, M.; Alhadadi, W.; Hafizah, F.; & Nor, M. Z. M. (2020). Mechanical and thermal properties of binary blends poly lactic acid (PLA) and recycled high-density polyethylene (rHDPE). IOP Conf. Ser.: Mater. Sci. Eng., 736(1): 052022.
Aguero, A.; Morcillo, M. D. C.; Carrillo, L. Q.; Balart, R.; Boronat, T.; Lascano, D.; Giner, S. T.; & Fenollar, O. (2019). Study of the influence of the reprocessing cycles on the final properties of polylactide pieces obtained by injection molding. Polymers, 11(12), 1908.
Aurrekoetxea, J.; Sarrionandia, M. A.; Urrutibeascoa, I.; & Maspoch, M.L. (2001). Effects of recycling on the microstructure and the mechanical properties of isotactic polypropylene. Journal of Materials Science, 36(6): 2607–2613.
Balani, S. B.; Chabert, F.; Nassiet, V.; & Cantarel, A. (2019). Influence of printing parameters on the stability of deposited beads in fused filament fabrication of poly(lactic) acid. Additive Manufacturing, 25(1): 112-121.
Babagowda.; Math, R. S. K.; Goutham, R.; & Prasad, K. R. S. (2018). Study of effects on mechanical properties of PLA filament which is blended with recycled PLA materials. IOP Conf. Ser.: Mater. Sci. Eng., 310(1): 012103.
Barbosa, J. D. V.; Azevedo, J. B.; Araújo, E. M.; Machado, B. A. S.; Hodel, K. V. S.; & Mélo, T. J. A. (2019). Bionanocomposites of PLA/PBAT/organophilic clay: preparation and characterization. Polímeros, 29(3): e2019045.
Bahlouli, N.; Pessey, D.; Raveyre, C.; Guillet, J.; Ahzi, S.; Dahoun, A.; & Hiver, J. M. (2012). Recycling effects on the rheological and thermomechanical properties of polypropylene-based composites. Materials and Design, 33(1): 451-458.
Becena, A. F. C. (2005). Caracterização de PEAD antes e após envelhecimento em diferentes meios e condições. Master’s dissertation, Pontifical Catholic University (Rio de Janeiro), Brazil.
Brito, G. F.; Agrawal, P.; Araújo, E. M.; & Melo, T. J. A. (2012). Toughening of polylactide by melt blending with an (ethylene/methyl acrylate/glycidyl methacrylate) terpolymer. Polímeros, 22(2): 164-169.
Brito, G. F.; Agrawal, P.; Araújo, E. M.; & Mélo, T. J. A. (2012). Polylactide/biopolyethylene bioblends. Polímeros, 22(5), 427-429.
Boubekeur, B.; Bensemra, N. B.; & Massardier, V. (2020). Low‐density polyethylene/poly(lactic acid) blends reinforced by waste wood flour. Journal of Vinyl and Additive Technology. Epub ahead of print 21 January 2020. DOI: 10.1002/vnl.21759.
Cáceres, C. A.; Mazzola, N.; França, M.; & Canevarolo, S. V. (2009). Wetting tension and superficial degradation of polypropylene films under corona discharge. Anais do 10° Congresso Brasileiro de Polímeros (CBPOl), Foz do Iguaçu-PR, Brazil, p. 1-8.
Camargo, R. V.; & Saron, C. (2020). Mechanical–chemical recycling of low-density polyethylene waste with polypropylene. Journal of Polymers and the Environment, 28(3): 794–802.
Carmo, K. M.; Silva, M. C.; & Morelli, C. L. (2020). Reaproveitamento de resíduo de espuma rígida de poliuretano em uma matriz termoplástica de poliuretano. Research, Society and Development, 9(3): e127932695.
Chaiwutthinan, P.; Chauyjuljit, S.; Thipkham, N.; Kowalski, C. P.; & Boonmahitthisud, A. (2019). Poly(lactic acid)/ethylene vinyl acetate copolymer blend composites with wood flour and wollastonite: Physical properties, morphology, and biodegradability. Journal os Vinyl & Additive Technology, 25(4): 313-327.
Di Lorenzo, M. L.; Rubino, P.; & Cocca, M. (2013). Miscibility and properties of poly (l-lactic acid)/poly (butylene terephthalate) blends. European Polymer Journal, 49 (10): 3309-3317.
Di Lorenzo, M. L.; Cocca, M.; & Malinconico, M. (2011). Crystal polymorphism of poly(l-lactic acid) and its influence on thermal properties. Thermochimica Acta, 522(1–2): 110-117.
Ferreira, E. S. B.; Pereira, C. H. O.; Araújo, E. M.; Bezerra, E. B.; Siqueira, D. D.; & Wellen, R. M. R. (2019a). Properties and morphology of polypropylene/big bags compounds. Materials Research, 22(1): e20180850.
Ferreira, E. S. B.; Luna, C. B. B.; Araújo, E. M.; Siqueira, D. D.; & Wellen, R. M. R. (2019b). Polypropylene/wood powder composites: Evaluation of PP viscosity in thermal, mechanical, thermomechanical, and morphological characters. Journal of Thermoplastic Composite Materials. Epub ahead of print October 9, 2019b. DOI: 10.1177/0892705719880958.
Ferreira, L. A. S.; Pessan, L. A.; & Júnior, E. H. (1997). Comportamento mecânico e termo-mecânico de blendas poliméricas PBT/ABS. Polímeros: Ciência e Tecnologia 1997, 7(1): 67-72.
Fukushima, K.; Tabuani, D.; & Camino, G. Nanocomposites of PLA and PCL based on montmorillonite and sepiolite. (2009). Materials Science and Engineering: C, 29(4): 1433-1441.
Galindo, M. V.; Paglione, I. S.; Coelho, A. R.; Leimann, F. V.; & Shirai, M. A. (2020). Produção de nanopartículas de quitosana e aplicação como revestimento em blendas de amido de mandioca e poli(ácido lático). Research, Society and Development, 9(9): e505997694.
Hong, J. H.; Yu, T.; Park, S. J.; & Kim, Y. H. (2020). Repetitive recycling of 3D printing PLA filament as renewable resources on mechanical and thermal loads. International Journal of Modern Physics B, 20401479(1): 1-5.
Lima, J. C. C.; Araújo, J. P.; Agrawal, P.; & Mélo, T. J. A. (2016). Efeito do teor do copolímero SEBS no comportamento reológico da blenda PLA/SEBS. Revista Eletrônica de Materiais e Processos, 11(1): 10–17.
Luna, C. B. B.; Araújo, E. M.; Siqueira, D. D.; Morais, D. D. S.; Filho, E. A. S.; & Fook, M. V. (2020a). L. Incorporation of a recycled rubber compound from the shoe industry in polystyrene: Effect of SBS compatibilizer content. Journal of Elastomers & Plastics, 52(1): 3-28.
Luna, C. B. B.; Siqueira, D. D.; Ferreira, E. S. B.; Silva, W. A.; Nogueira, J. A. S.; & Araújo, E. M. (2020b). From disposal to technological potential: reuse of polypropylene waste from industrial containers as a polystyrene impact modifier. Sustainability, 12(13): 5272.
Luna, C. B. B.; Siqueira, D. D.; Araújo, E. M.; & Wellen, R. M. R.; Mélo, T. J. A. (2020c). Approaches on the acrylonitrile‐butadiene‐styrene functionalization through maleic anhydride and dicumyl peroxide. Journal of Vinyl and Additive Technology. Epub ahead of print 11 September 2020c. DOI: 10.1002/vnl.21804.
Luna, C. B. B.; Siqueira, D. D.; Araújo, E. M.; & Wellen, R. M. R. (2019a). Tailoring PS/PPrecycled blends compatibilized with SEBS. Evaluation of rheological, mechanical, thermomechanical and morphological characters. Materials Research Express, 6(7): 075316.
Luna, C. B. B.; Ferreira, E. S. B.; Silva, L. J. M. D.; Silva, W. A.; Araújo, E. M.; & Melo, J. B. C. A. (2019b). Blends with technological potential of copolymer polypropylene with polypropylene from post-consumer industrial containers. Materials Research Express, 6(12): 125319.
Luna, C. B. B.; Ferreira, E. S. B.; Siqueira, D. D.; Silva, W. A.; Araújo, E. M.; & Wellen, R. M. R. (2019c). Tailoring performance of PP/HIPS/SEBS through blending design. Materials Research Express, 6(11): 115321.
Luna, C. B. B.; Gomes, F. B. C.; Ferreira, E. S. B.; Araújo, E. M.; Ferreira, R. S. B.; & Wellen, R. M. R. (2019c). Photo-degradation of PS/SBRr blends compatibilized with SEBS. Materials Research Express, 6(9): 095327.
Luna, C. B. B.; Silva, D. F.; & Araújo, E. M. (2015). Estudo do comportamento de blendas de poliamida 6/resíduo de borracha da indústria de calçados. Revista Univap, 20(36): 98-110.
Luna, C. B. B.; Silva, D. F.; Araújo, E. M.; Mélo, T. J. A.; & Oliveira, A. D. (2016). Efeito dos agentes de compatibilização SBS e SEBS-MA no desempenho de misturas de poliestireno/resíduo de borracha de SBR. Matéria (Rio J.), 21(3), 632-646.
Luna, C. B. B.; Silva, D. F.; & Araújo, E. M. (2014). Análise do comportamento termomecânico, térmico e mecânico de blendas de PA6/resíduos de borracha. Revista de Engenharia e Tecnologia, 6(1), 160-169.
Maiza, M.; Benaniba, M. T.; Quintard, G.; & Nageotte, V. M. (2015). Biobased additive plasticizing Polylactic acid (PLA). Polímeros, 25(6): 581-590.
Manaf, O.; Sheeja.; Jowhar, A.; & Sujith, A. (2018). Effect of unsaturation on physicochemical properties of maleic anhydride–grafted acrylonitrile butadiene styrene terpolymer. Journal of Elastomers & Plastics, 50(6): 520-536.
Mélo, T. J. A.; Carvalho, L. H.; Calumby, R. B.; Brito, K. G. Q.; D`Almeida, J. R. M.; & Spieth, E. (2000). Propriedades mecânicas e morfologia de uma blenda polimérica de PP/HIPS compatibilizada com SEBS. Polímeros: Ciência e Tecnologia, 10(2), 82-89.
Mohapatra, A. K.; Mohanty, S.; & Nayak, S. (2012). Poly (lactic acid) and layered silicate nanocomposites prepared by melt mixing: Thermomechanical and morphological properties. Polymer Composites, 33 (12): 2095-2104.
Morais, D. D. S.; Siqueira, D. D.; Luna, C. B. B.; Araújo, E. M.; Bezerra, E. B.; & Wellen, R. M. R. (2019). Grafting maleic anhydride onto polycaprolactone: influence of processing. Materials Research Express, 6(5): 055315.
Nascimento, U. A.; Timóteo, G. A. V.; & Rabello, M. S. (2013). Efeito de plastificantes à base de poliisobutenos nas propriedades físicas e mecânicas do polipropileno. Polímeros, 23(2): 257-261.
Okan, M.; Aydin, H. M.; & Barsbay, M. (2019). Current approaches to waste polymer utilization and minimization: a review. Journal os chemical technology and biotechnology, 94(1): 8-21.
Oliveira, A. C. S.; & Borges, S. V. (2020). Poli (ácido lático) aplicado para embalagens de alimentos: uma revisão. Revista Eletrônica de Materiais e Processos, 15(1): 1-10.
Pereira, R. B.; & Morales, A. R. (2014). Estudo do comportamento térmico e mecânico do PLA modificado com aditivo nucleante e modificador de impacto. Polímeros, 24(2), 198-202.
Perego, G. & Cella, G. D. (2010). “Mechanical Properties”, in: Poly(lactic acid): Synthesis, Structures, Properties, Processing, and Applications”, John Wiley & Sons.
Piemonte, V.; Sabatini, S.; & Gironi, F. (2013). Chemical recycling of PLA: a great opportunity towards the sustainable development?. Journal of Polymers and the Environment, 21(7): 640-647.
Pillin, I.; Montrelay, N.; Bourmaud, A.; & Grohens, Y. (2008). Effect of thermo-mechanical cycles on the physico-chemical properties of poly(lactic acid). Polymer Degradation and Stability, 93(2): 321-328.
Rabello, M. S.; & Wellen, R. M. R. (2008). Estudo da cristalização a frio do poli (tereftalato de etileno) (PET) para produção de embalagens. Revista Eletrônica de Materiais e Processos, 3(2): 01-09.
Rabello, M. S. (2000). Polymers additives: nucleating agents. São Paulo: Artliber Editora, p. 159-170.
Ribeiro, V. F.; Júnior, N. S. D.; & Riegel, I. C. (2012). Recovering properties of recycled HIPS through incorporation of SBS triblock copolymer. Polímeros, 22(2), 186-192.
Rocha, M. C. G.; Coutinho, F. M. B.; & Balke, S. (1994). Índice de fluidez: uma variável de controle de processos de degradação controlada. de polipropileno por extrusão reativa. Polímeros: Ciência e Tecnologia, 4(3): 33-37.
Rusayyis, M. A. B.; Schiraldi, D. A.; & Maia, J. (2018). Property/morphology relationships in SEBS-compatibilized HDPE/poly(phenylene ether) blends. Macromolecules, 51(16): 6513–6523.
Santana, L.; Alves, J. L.; Netto, A. C. S.; & Merlini, C. (2018). Estudo comparativo entre PETG e PLA para Impressão 3D através de caracterização térmica, química e mecânica. Matéria (Rio J.), 23(4): e12267.
Satya, S. K.; & Sreekanth, P. S. R. (2020). An experimental study on recycled polypropylene and high-density polyethylene and evaluation of their mechanical properties. Materials Today: Proceedings, 27(2): 920-924.
Shetty, S. D.; & Shetty, N. (2019). Investigation of mechanical properties and applications of polylactic acids—a review. Materials Research Express, 6(11): 112002.
Silva, M. C.; Oliveira, S. V.; & Araújo, E. M. (2014). Propriedades mecânicas e térmicas de sistemas de PLA e PBAT/PLA. Revista Eletrônica de Materiais e Processos 2014, 9(2), 112–117.
Silva, T. F.; Montagna, L. S.; Lemes, A. P.; & Passador, F. R. (2020). Synergistic effect of adding lignin and carbon black in poly(lactic acid). Polímeros, 30(1): e2020002.
Siqueira, D. D.; Luna, C. B. B.; Araújo, E. M.; Ferreira, E. S. B.; & Wellen, R. M. R. (2019a). Biocomposites based on PCL and macaiba fiber. Detailed characterization of main properties. Materials Research Express, 6(9): 095335.
Spinacé, M. A. S.; & Paoli, M. A. (2005). The technology of polymer recycling. Quimica Nova, 28(1): 65-72.
Valerio, O.; Muthuraj, R.; & Codou, A. (2020). Strategies for polymer to polymer recycling from waste: Current trends and opportunities for improving the circular economy of polymers in South America. Current Opinion in Green and Sustainable Chemistry, 25(10): 100381.
Wang, B.; Hina, K.; Zou, H.; Zuo, D.; & Yi, C. (2018). Thermal, crystallization, mechanical and decomposition properties of poly(lactic acid) plasticized with poly(ethylene glycol). Journal os Vinyl & Additive Technology, 24(s1): E154-E163.
Wang, L.; & Gardner, D. J. (2018). Contribution of printing parameters to the interfacial strength of polylactic acid (PLA) in material extrusion additive manufacturing. Progress in Additive Manufacturing, 3(4): 165-171.
Wellen, R. M. R.; & Rabello, M. S. (2007). Redução da velocidade de cristalização a frio do PET na presença de poliestireno. Polímeros: Ciência e Tecnologia, 17(2): 113-122.
Zander, N. E.; Gillan, M.; Burckhard, Z.; & Gardea, F. (2019). Recycled polypropylene blends as novel 3D printing materials. Additive Manufacturing, 25(1): 122-130.
Yu, L.; Liu, H.; Dean, K.; & Chen, L. (2008). Cold crystallization and postmelting crystallization of PLA plasticized by compressed carbon dioxide. Journal os Polymer Science. Part B – Polymer Physics, 46(23): 2630-2636.
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2020 Wellerson Salomão Diniz Marinho; Carlos Bruno Barreto Luna; Edcleide Maria Araújo; Carlos Heitor de Andrade Lustosa; Celso Rosendo Bezerra Filho; Raimundo Nonato Calazans Duarte
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Autores que publicam nesta revista concordam com os seguintes termos:
1) Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
2) Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
3) Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado.