Uma análise bibliométrica da literatura aplicada a transferênciade tecnologia em células a combustível

Autores

DOI:

https://doi.org/10.33448/rsd-v9i12.11021

Palavras-chave:

Energia sustentável; Transmissão de conhecimento; Subistituição tecnológica.

Resumo

O desenvolvimento de inovações intensivas em conhecimento é visto como meio para enfrentar questões relacionadas ao esgotamento de recursos naturais. O estudo tem como objetivo, identificar as ênfases e os mecanismos relacionados as Células a Combustível (CC) e consequentemente a Transferência de Tecnologia (TT), a partir de uma revisão sistemática aplicada na Scopus para período de 2010 até 2020.  A análise bibliométrica reuniu 37 artigos, e os resultados mostraram que China, EUA e Coreia do Sul são países que promovem com ênfase o desenvolvimento de CT&I direcionadas as (CC). Além disso, os reportes literários sobre (CC), denotam interesses prioritários em estudos sobre catalisadores e células a combustível de óxido sólidos em um espectro amplo de avaliação direcionado a baixar custos. Em contraste, a produção literária relativa a Transferência de Tecnologia converge para destacar estudos de viabilidade econômica, e estabelecer uma compreensão sobre os aspectos presentes para a Transferência de Tecnologia.

Biografia do Autor

Carlos Eduardo Celestino de Andrade, Universidade Federal de Sergipe

Primeiro bacharel em engenharia de Materiais formado no estado de Sergipe pela Universidade Federal de Sergipe (2007 - 2011), possuo mestrado em Ciência e Engenharia de Materiais pela Universidade Federal de Sergipe (2011 - 2013), não só, mas, possuo especialização em Engenharia de Segurança do Trabalho. Trabalhei na Empresa Brasileira de Perfuração de Poços Terrestres - Perbras ocupando cargo de Engenheiro de Segurança do Trabalho na unidade (CPT-SEAL/Petrobras), assim como, trabalhei (analista ferroviário/especialidade em segurança do trabalho) em obra de infraestrutura pesada na Empresa Pública vinculada ao Ministérios dos Transportes, Valec - Engenharia, Construções e Ferrovias S.A. Atualmente sou servidor público ocupando cargo de Engenheiro de Segurança do Trabalho do quadro da Universidade Federal de Sergipe e Perito Oficial.

Doutorando do curso de Programa de Pós-graduação em Ciência da Propriedade Intelectual - PPGPI/UFS

Francisco Sandro Rodrigues Holanda, Universidade Federal de Sergipe

Doutor em Agronomia pela Universidade Federal de Lavras (1996) e Pós-Doutorado pela Universidade de Wisconsin (EUA), Atualmente professor Titular no Departamento de Engenharia Agronômica-DEA da Universidade Federal de Sergipe-UFS. Líder do Grupo de Pesquisa em Gerenciamento Hidroambiental do Baixo São Francisco.

Wilsonita de Melo Ubirajara, Universiversidade Federal de Sergipe

Mestranda em Ciência da Propriedade Intelectual, Universidade Federal de Sergipe.

Arilmara Abade Bandeira, Universidade Federal de Sergipe

Mestre em Desenvolvimento e Meio Ambiente, doutoranda em Ciência da Propriedade Intelectual (PPGPI/UFS), docente do Instituto Federal de Sergipe e membro do grupo de pesquisa NPDEMA – Núcleo de Pesquisa em Desenvolvimento, Edificações e Meio Ambiente.

Luiz Diego Vidal Santos, Universidade Federal de Sergipe

Engenheiro Agrônomo pela Universidade Federal de Sergipe-UFS/Mestrando no Programa de Pós-graduação em Ciências da Propriedade Intelectual-PPGPI/UFS, membro do grupo de Pesquisa em Gerenciamento Hidroambiental do Baixo São Francisco e membro fundador da Liga Acadêmica do Agro Sustentável L-AGROS/UFS.

Referências

Abdelkareem, M. A., et al. (2019). On the technical challenges affecting the performance of direct internal reforming biogas solid oxide fuel cells. Renewable and Sustainable Energy Reviews, 101, 361–375. DOI: 10.1016/j.rser.2018.10.025.

Al-Sharafi, A., et al. (2017). Techno-economic analysis and optimization of solar and wind energy systems for power generation and hydrogen production in Saudi Arabia. Renewable and Sustainable Energy Reviews, 69 (November 2016), 33–49. DOI: 10.1016/j.rser.2016.11.157

Amador, S. R., et al (2018). Indicator system for managing science, technology and innovation in universities. Scientometrics Springer Link, 115(3), p.1575–1587. DOI: 10.1007/s11192-018-2721-y.

Andrade, C.E.C., et al., (2020). An analysis of overlapping terms to define articles key words: The use of VOSviewer tool applied to technology transfer in fuel cells. International Journal for Innovation Education and Research, 8(08), 275–287. DOI: 10.31686/ijier.vol8.iss8.2516.

Bai, W., & Zhang, L. (2020). How to finance for establishing hydrogen refueling stations in China? An analysis based on Fuzzy AHP and PROMETHEE. International Journal of Hydrogen Energy, 237, 34354–34370. DOI: 10.1016/j.ijhydene.2019.12.198.

Cantuarias-villessuzanne, c., Weinberger, b., Roses, l., Vignes, a.; Brignon, j. m. (2016). Social cost-benefit analysis of hydrogen mobility in Europe. International Journal of Hydrogen Energy, 41(42), 19304–19311.DOI: 10.1016/j.ijhydene.2016.07.213.

Chai, G. L., et al., (2017). Active sites engineering leads to exceptional ORR and OER bifunctionality in P,N Co-doped graphene frameworks. Energy and Environmental Science, 10(5), 1186–1195. DOI:10.1039/c6ee03446b.

Chang, J., et al (2016). Pt-CoP/C as an alternative PtRu/C catalyst for direct methanol fuel cells. Journal of Materials Chemistry A, 4(47), 18607–18613. DOI:10.1039/c6ta07896f.

Chen, P., et al (2016). Cobalt nitrides as a class of metallic electrocatalysts for the oxygen evolution reaction. Inorganic Chemistry Frontiers, 3(2), 236–242. DOI: 10.1039/c5qi00197h.

Cheng, Z., et al (2011). From Ni-YSZ to sulfur-tolerant anode materials for SOFCs: Electrochemical behavior, in situ characterization, modeling, and future perspectives. Energy and Environmental Science, 4(11), 4380–4409. DOI:10.1039/c1ee01758f.

Choi, S., et al., (2018). Exceptional power density and stability at intermediate temperatures in protonic ceramic fuel cells. Nature Energy, 3(3), 202–210. DOI:10.1038/s41560-017-0085-9.

Dwivedi, S. (2020). Solid oxide fuel cell: Materials for anode, cathode and electrolyte. International Journal of Hydrogen Energy, DOI: 10.1016/j.ijhydene.2019.11.234.

Ehret, o.; Bonhoff, K. (2015). Hydrogen as a fuel and energy storage: Success factors for the German energiewende. International Journal of Hydrogen Energy, 40(15), 5526–5533. DOI: 10.1016/j.ijhydene.2015.01.176.

Erdinc, o.; Uzunoglu, m. (2010). Recent trends in PEM fuel cell-powered hybrid systems: Investigation of application areas, design architectures and energy management approaches. Renewable and Sustainable Energy Reviews, 14(9), 2874–2884. DOI: 10.1016/j.rser.2010.07.060.

Ferreira, J. J. M., Fernandes, C. I.; Ferreira, F. A. F. (2020). Technological Forecasting & Social Change Technology transfer, climate change mitigation, and environmental patent impact on sustainability and economic growth : A comparison of European countries. Technological Forecasting & Social Change. 150. p. 119770. DOI: 10.1016/j.techfore.2019.119770.

Florio, D.Z, et al., (2004). Materiais cerâmicos para células a combustível de óxido sólido. Cerâmica, v.50. p.275-290. DOI: 10.1590/S0366-69132004000400002.

Fukuda, K. (2020). Science, technology and innovation ecosystem transformation toward society 5.0. International Journal of Production Economics, 220, 107460. DOI:10.1016/j.ijpe.2019.07.033.

Furlan, T. Z., et al (2017). Gestão ambiental dos processos produtivos e gestão de recursos naturais: análise dos artigos publicados em um encontro nacional brasileiro entre os anos de 2011 a 2015. Revista Espacios. v. 38, p. 17-38. Disponível em: https://www.revistaespacios.com/a17v38n06/a17v38n06p17.pdf. Acesso em: 22/11/2020.

García P. L.O., Pérez, M. R.; Miranda, Z. A. (2018). Los profesores-investigadores universitarios y sus motivaciones para transferir conocimiento. Revista Electrónica de Investigación Educativa, 20(3), 43. DOI: 10.24320/redie.2018.20.3.1754.

Hayter, C. S., Rasmussen, E.; Rooksby, J. H. (2020). Beyond formal university technology transfer: innovative pathways for knowledge exchange. Journal of Technology Transfer, 45(1), 1–8. DOI:10.1007/s10961-018-9677-1.

Horner, S., et al., (2019). Strategic choice in universities: Managerial agency and effective technology transfer. Research Policy, 48(5), 1297–1309. DOI: 10.1016/j.respol.2019.01.015.

Kaur, P.; Singh, K. (2020). Review of perovskite-structure related cathode materials for solid oxide fuel cells. Ceramics International, 46(5), 5521–5535. DOI: 10.1016/j.ceramint.2019.11.066.

Koenigsmann, C.; Wong, S. S. (2011). One-dimensional noble metal electrocatalysts: A promising structural paradigm for direct methanol fuel cells. Energy and Environmental Science, 4(4), 1161–1176. DOI: 10.1039/c0ee00197j.

Korhonen, J., Honkasalo, A.; Seppälä, J. (2018). Circular Economy: The Concept and its Limitations. Ecological Economics, 143, 37–46. DOI: 10.1016/j.ecolecon.2017.06.041.

Kumar, S. S. et al., (2019). Microbial fuel cells as a sustainable platform technology for bioenergy, biosensing, environmental monitoring, and other low power device applications. Fuel, 255, 115682. DOI: 1016/j.fuel.2019.115682.

Kwon, T., et al., (2019). Nanoscale hetero-interfaces between metals and metal compounds for electrocatalytic applications. Journal of Materials Chemistry A, 7(10), 5090–5110. DOI:10.1039/c8ta09494b.

J.O’M. Bockris; MinevskI, Z.; (1995). Two Zones of " Impurities " Observed After Prolonged Electrolysis of Deuterium on Palladium. November. Department of Chemistry, Texas A&M University, College Station, TX 77843-3255. p. 67. Disponível em: https://www.lenr-canr.org/acrobat/BockrisJtwozonesof.pdf. Acesso em: jul. 2020.

Liu, J., et al., (2017). High performance platinum single atom electrocatalyst for oxygen reduction reaction. Nature Communications, 8(May), 1–9. DOI: 10.1038/ncomms15938.

Liu, M., et al (2011). Rational SOFC material design: New advances and tools. Materials Today, 14(11), 534–546. DOI:10.1016/S1369-7021(11)70279-6.

Luta, D. N.; Raji, A. K. (2019). Optimal sizing of hybrid fuel cell-supercapacitor storage system for off-grid renewable applications. Energy, 166, 530–540. DOI: 10.1016/j.energy.2018.10.070.

Pereira, A. S., et al., (2018). Método Qualitativo, Quantitativo ou Quali-Quanti. In Metodologia da Pesquisa Científica. Disponível em: https://repositorio.ufsm.br/bitstream/handle/1/15824/Lic_Computacao_Metodologia-Pesquisa-Cientifica.pdf?sequence=1. Acesso em: 28 março 2020.

Pohl, H.; Yarime, M. (2012). Integrating innovation system and management concepts: The development of electric and hybrid electric vehicles in Japan. Technological Forecasting and Social Change, 79(8), 1431–1446. DOI: 10.1016/j.techfore.2012.04.012.

Sánchez, P. P. I., Maldonado, C. J., Velasco, A. P. (2012). Caracterización de las Spin-Off universitarias como mecanismo de transferencia de tecnología a través de un análisis clúster. Revista Europea de Direccion y Economia de La Empresa, 21(3), 240–254. DOI: 10.1016/j.redee.2012.05.004.

SCOPUS. Guia de Referência Rápida. (2015). 16. Disponível em: https://www.periodicos.capes.gov.br/images/documents/Scopus_Guia%20de%20refer%C3%AAncia%20r%C3%A1pida_10.08.2016.pdf. Acesso em: 17/06/2020.

SCOPUS. Acrescente Valor à sua pesquisa. (2018). Disponível em: https://www.periodicos.capes.gov.br/images/documents/Scopus_Guia%20completo_10.08.2016.pdf. Acesso em: 17/06/2020.

Sebastián, D., et al., (2016). High performance and cost-effective direct methanol fuel cells: Fe-N-C methanol-tolerant oxygen reduction reaction catalysts. ChemSusChem, 9(15), 1986–1995. DOI: 10.1002/cssc.201600583.

Shih, Z. Y., et al., (2013). Porous palladium copper nanoparticles for the electrocatalytic oxidation of methanol in direct methanol fuel cells. Journal of Materials Chemistry A, 1(15), 4773–4778. DOI: 10.1039/c3ta01664a.

Sonawane, J. M., et al., (2017). Recent advances in the development and utilization of modern anode materials for high performance microbial fuel cells. Biosensors and Bioelectronics, 90(2016), 558–576. DOI: 10.1016/j.bios.2016.10.014.

Staffell, I., et al., (2019). The role of hydrogen and fuel cells in the global energy system. Energy and Environmental Science, 12(2), 463–491. DOI:10.1039/c8ee01157e.

Su, X., et al., (2020). Thermodynamic analysis and fuel processing strategies for propane-fueled solid oxide fuel cell. Energy Conversion and Management, 204, 112279. DOI: 10.1016/j.enconman.2019.112279.

Tian, X., et al., (2020). Advanced Electrocatalysts for the Oxygen Reduction Reaction in Energy Conversion Technologies. Joule, 4(1), 45–68. DOI: 10.1016/j.joule.2019.12.014.

Tong, J., Clark, D., Hoban, M.; O’hayre, R. (2010). Cost-effective solid-state reactive sintering method for high conductivity proton conducting yttrium-doped barium zirconium ceramics. Solid State Ionics, 181(11–12), 496–503. DOI:10.1016/j.ssi.2010.02.008.

Vargas, R. A., et al., (2006). Uma visão da tecnologia de células a combustível. Centro de Ciência e Tecnologia de Materiais (CCTM), Instituto de Pesquisas Energéticas e Nucleares (IPEN), São Paulo - SP – Brasil. Disponível em: https://www.ipen.br/biblioteca/2006/eventos/15436.pdf. Acesso em: jul.2020.

Vieira, P. V. M.; WAINER, J. (2013). Correlações entre a contagem de citações de pesquisadores brasileiros, usando o web of science, scopus e scholar. perspectivas em ciência da informação, 18(3), 45–60. DOI: 10.1590/S1413-99362013000300004.

Wang, Y., et al., (2020). BiOCl-based photocathode for photocatalytic fuel cell. applied surface science, 506, 144949. DOI: https:10.1016/j.apsusc.2019.144949.

Wu, D., et al., (2020). Platinum Alloy Catalysts for Oxygen Reduction Reaction: Advances, Challenges and Perspectives. chemnanomat, 6(1), 32–41. DOI: 10.1002/cnma.201900319.

Wu, J.; Yang, H. (2013). Platinum-based oxygen reduction electrocatalysts. accounts of chemical research, 46(8), 1848–1857. DOI: 10.1021/ar300359w.

Yan, X., (2018). Defective Carbons Derived from Macadamia Nut Shell Biomass for Efficient Oxygen Reduction and Supercapacitors. chemelectrochem, 5(14), 1874–1879. DOI: 10.1002/celc.201800068.

Zhao, M., et al., (2018). Hollow Metal Nanocrystals with Ultrathin, Porous Walls and Well-Controlled Surface Structures. advanced materials, 30(48).

DOI: 10.1002/adma.201801956.

Zhu, C., LI, X.; CHEN, Y. (2020). Did the Chinese Bayh-Dole Act encourage the activities of technology transfer? An answer from a legal system. asian journal of technology innovation, 0(0), 1–17. DOI: 10.1080/19761597.2020.1797515.

Downloads

Publicado

20/12/2020

Como Citar

ANDRADE, C. E. C. de .; HOLANDA, F. S. R. .; UBIRAJARA, W. de M. .; BANDEIRA, A. A. .; SANTOS, L. D. V. . Uma análise bibliométrica da literatura aplicada a transferênciade tecnologia em células a combustível. Research, Society and Development, [S. l.], v. 9, n. 12, p. e22391211021, 2020. DOI: 10.33448/rsd-v9i12.11021. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/11021. Acesso em: 8 jan. 2025.

Edição

Seção

Artigos de Revisão