Modelo de rede neural artificial para previsão da capacidade de carga de estacas cravadas

Autores

DOI:

https://doi.org/10.33448/rsd-v10i1.11526

Palavras-chave:

Redes neurais artificiais; Capacidade de carga; Fundações profundas; Estacas cravadas.

Resumo

Na geotecnia, diversos modelos, empíricos ou não, têm sido propostos para o cálculo da capacidade de carga em fundações profundas. Esses modelos funcionam principalmente por meio de suposições físicas e construção de aproximações por meio de modelos matemáticos. Redes Neurais Artificiais (RNA), além de outras aplicações, são excelentes mecanismos computacionais que, com base no aprendizado neural biológico, podem realizar previsões e aproximações de funções. Neste trabalho, é apresentada uma aplicação de redes neurais artificiais. O objetivo aqui é propor um modelo matemático baseado em inteligência artificial focado no aprendizado de Redes Neurais Artificiais (RNA) capaz de predizer a capacidade de carga de estacas cravadas. Os resultados obtidos por meio da rede neural foram comparados com valores reais de capacidades de carga obtidos em campo por meio de provas de carga. Para esta comparação quantitativa, as seguintes métricas foram escolhidas: coeficiente de correlação de Pearson e erro quadrático médio. A base de dados utilizada para a execução do estudo consistia em 233 provas de carga, realizadas em diversas cidades e diferentes países, para os quais estavam disponíveis os valores de capacidade de carga, peso do martelo, altura de queda do martelo, comprimento da estaca, diâmetro da estaca e nega. Esses valores foram usados como valores de entrada em uma rede neural do tipo perceptron multicamadas para estimar as capacidades de carga das respectivas estacas. Verificou-se que o modelo neural proposto apresentou, em geral, correlação com valores de campo acima de 90%, chegando a 96% no melhor resultado.

Referências

ABNT, N. B. R. (2010). Projeto e execução de fundações. Associação Brasileira de Normas Técnicas, Rio de Janeiro, Brasil.

Amancio, L. B. (2013). Previsão de Recalques em Fundações Profundas Utilizando Redes Neurais Artificiais do Tipo Perceptron. Dissertação (Mestrado) - Mestraod em Engenharia Civil: Geotecnia. Centro de Tecnologia. Universidade Federal do Ceará, Fortaleza.

Araújo, C. B. C., Neto, S. A. D. & Anjos, G. J. M. dos. (2015). Estimativa de Recalque em Estacas Utilizando Redes Neurais Artificiais. Anais do VII Simpósio Brasileiro de Engenheiros Geotécnicos Jovens.

Azeredo, H. A. (1977). O Edifício Até Sua Cobertura. (2nd ed.) Edgard Blücher, São Paulo.

Batista, C. F. B. (2012). Soluções de Equações Diferenciais Usando Redes Neurais de Múltiplas camadas com os métodos da Descida mais íngreme e Levenberg-Marquardt. Dissertação (Mestrado). Programa de Pós-graduação em Matemática. Universidade Federal do Pará, Belém.

Benesty, J., Chen, J., Huang, Y., & Cohen, I. (2009). Pearson correlation coefficient. In: Noise reduction in speech processing. (pp. 1-4). Springer, Berlin, Heidelberg.

Bowles, J. E. (1996). Foundation Analysis and Design. (5th ed.), The McGraw-Hill Companies, Inc., New York.

Cintra, J. C. A. & Aoki, N. (2011). Fundações por estacas: projeto geotécnico. Oficina de Textos, São Paulo.

Das, B. M. (2010). Principles of the Geotechnical Engineering. (7th ed.), Cengage Learning, Stamford.

Das, B. M. (2011). Principles of Foundation Engineering. Seventh Edition.Cengage Learning, Stamford.

Erzin, Y. & Gul, T. O. (2014). The use of neural networks for the prediction of the settlement of one-way footings on cohesionless soils based on standard penetration test. Neural Computing and Applications, 24(3–4), 891–900.

Fellenius, B. H. (2020). Basics of Foundation Design. British Columbia. <http://www.fellenius.net/papers/401%20The%20Red%20Book ,%20Basics%20of%20foundation%20design%202020.pdf>

Hachich, W. C., Falconi, F. F., Saes, J., Frota, R. G. Q., Carvalho, C. S. & Niyama, S. (1998). Fundações – Teoria e prática. Ed. Pini, ABMS/ABEF, (2nd. ed.).

Haykin, S. (2001). Redes Neurais: Princípios e Prática. (2nd ed.), Bookman, Porto Alegre.

Jayaweera, M. S. R. (2009). Capacity Estimation of Piles Using Dynamic Methods. Master of Engineering in Foundation Engineering & Earth Retaining Systems. University of Moratuwa. Sri-Lanka

Kalinli, A., Acar, M. C. & Gündüz, Z. (2011). New approaches to determine the ultimate bearing capacity of shallow foundations based on artificial neural networks and ant colony optimization. Engineering Geology, 117(1–2), 29–38.

Khanlari, G. R., Mojtaba, H., Momeni, A.A. & Abdin, Y. (2012). Prediction of shear strength parameters of soils using artificial neural networks and multivariate regression methods. Engineering Geology, 131–132, 11–18, 2012.

Lobo, B. O. (2005). Método de previsão de capacidade de carga de estacas : aplicação dos conceitos de energia do ensaio SPT . Dissertação (Mestrado). Programa de Pós-Graduação em Engenharia Civil. UFRGS, Porto Alegre .

Padmini, D., Ilamparuthi, K. &Sudheer, K. P. (2008). Ultimate bearing capacity prediction of shallow foundations on cohesionless soils using neurofuzzy models. Computers and Geotechnics, v. 35, n. 1, p. 33–46.

Pereira, A. S., Shitsuka, D. M., Parreira, F. J., & Shitsuka, R. (2018). Metodologia da pesquisa científica. [eBook]. Santa Maria. Ed. UAB / NTE / UFSM. https://repositorio.ufsm.br/bitstream/handle/1/15824/Lic_Computacao_Metodologia-Pesquisa-Cientifica.pdf?sequence=1.

Pessoa, A. D. (2018). Modelo Neuronal para Previsão de Capacidade de Carga em Fundações Profundas. Universidade Federal do Maranhão, São Luis.

SCAC. (2013). Case: conjunto residencial no Rio de Janeiro. <https://issuu.com/scacengenharia/docs/scac_case_conj_residencial_rj>

Shanazari, H. & Tutunchian, M. A. (2012). Prediction of ultimate bearing capacity of shallow foundations on cohesionless soils: An evolutionary approach. KSCE Journal of Civil Engineering, 16(6), 950–957.

Silva, I. N., Spatti, D. & Flauzino, R. (2016). Redes Neurais Artificiais para Engenharia e Ciências Aplicadas: Curso Prático. (2nd ed.), São Paulo. Artliber Editora.

Tian, H. & Shang, Z. (2006). Artificial neural network as a classification method of mice by their calls. Ultrasonics, 44, e275--e278.

Velloso, D. A. & Lopes, F. de R. (2011). Fundações: critérios de projeto, investigação do subsolo, fundações superficiais, fundações profundas. Oficina de Textos, São Paulo.

Vesic, A. S. (1963). Bearing Capacity of Deep Foundations in Sand. National Academy of Sciences, Highway Research Board, Report No. 39, Washington D.C. pp. 112-153.

Willmott, C. J. & Matsuura, K. (2005). Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance. Clim Res. 30(1):79–82.

Yan, H., Jiang, Y., Zheng, J., Peng, C. & Li, Q. (2006). A multilayer perceptron-based medical decision support system for heart disease diagnosis. Expert Systems with Applications, 30(2), 272–281.

Zanella, L. C. H. (2011). Metodologia de Pesquisa. (2nd ed.). <http://arquivos.eadadm.ufsc.br/EaDADM/UAB_2014_2/Modulo_1/Metodologia/material_didatico/Livro texto Metodologia da Pesquisa.pdf>

Downloads

Publicado

04/01/2021

Como Citar

PESSOA, A. D. .; SOUSA, G. C. L. de .; ARAUJO, R. da C. de .; ANJOS, G. J. M. dos . Modelo de rede neural artificial para previsão da capacidade de carga de estacas cravadas. Research, Society and Development, [S. l.], v. 10, n. 1, p. e12210111526, 2021. DOI: 10.33448/rsd-v10i1.11526. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/11526. Acesso em: 15 jan. 2025.

Edição

Seção

Engenharias