Análise comparativa da resistência à corrosão de revestimentos de Zinco e Zn-Al-Mg em aço carbono

Autores

DOI:

https://doi.org/10.33448/rsd-v10i1.11973

Palavras-chave:

Aço revestido; Corrosão; Magnésio; Microestrutura.

Resumo

Uma das principais formas de proteger o aço contra a corrosão é pelo processo de galvanização. Este processo tem sido continuamente desenvolvido e sua primeira otimização foi realizada com a adição de Alumínio no revestimento. Como resultado, foram desenvolvidos revestimentos de Zn-5% em peso de Al e 55% em peso de Al-Zn. Recentemente, a busca por maior resistência à corrosão levou ao desenvolvimento do revestimento de zinco com adição de magnésio e alumínio. Neste trabalho, foi realizado um estudo comparativo da resistência à corrosão do aço revestido com zinco e do aço revestido com liga de Zn-2% Al-1% Mg. As amostras foram expostas a testes de corrosão por imersão em eletrólito NaCl 0,1 M e analisadas por meio de MEV, XDR e EIS. No aço revestido com zinco, o substrato de aço foi atacado após 48 dias de imersão, enquanto no aço revestido com Zn-2% Al-1% Mg revestido em peso, o substrato de aço apresentou processo corrosivo após 90 dias de imersão. O produto de corrosão formado a partir de aço revestido de Zn-2% Al-1% em peso de Mg é a principal causa de sua melhor resistência à corrosão em comparação ao aço revestido de zinco.

Referências

Chen, S., Yan, F., Xue, F., Yang, L., & Liu, J., (2010). X-ray photoelectron spectroscopy investigations of zinc–magnesium alloy coated steel, Materials, Chemistry and Physics, 124, 472–476.

Diler, E., Lescop, B., Rioual, S., Nguyen Vien, G., Thierry, D., & Rouvellou, B., (2014). Initial formation of corrosion products on pure zinc and MgZn2 examinated by XPS, Corrosion Science, 79, 83–88.

Diler, E., Rioual, S., Lescop, B., Thierry, D., & Rouvellou, B., (2012). Chemistry of corrosion products of Zn and MgZn pure phases under atmospheric conditions, Corrosion Science, 65, 178–186.

Duchoslav, J., Arndt, M., Steinberger, R., Keppert, T., Luckeneder, G., Stellnberger, K. H., Hagler, J., Riener, C. K., Angeli, G., & Stifter, D., (2014). Nanoscopic view on the initial stages of corrosion of hot dip galvanized Zn–Mg–Al coatings, Corrosion Science, 83, 327–334.

Dutta, M., Halder, A. K., & Singh, S. B., (2010). Morphology and properties of hot dip Zn–Mg and Zn–Mg–Al alloy coatings on steel sheet, Surface and Coating Technology, 205, 2578–2584.

Elvins, J., Spittle, J. A., Sullivan, J. H., & Worsley, D. A., (2008). The effect of magnesium additions on the microstructure and cut edge corrosion resistance of zinc aluminium alloy galvanized steel, Corrosion Science, 50, 1650–1658.

Frankel, G. S., (1998). Pitting corrosion of metals: a review of the critical factors, Journal of the Electrochemical Society, 145, 2186–2198.

Hosking, N. C., Ström, M. A., Shipway, P. H., & Rudd, C. D., (2007). Corrosion resistance of zinc–magnesium coated steel, Corrosion Science, 49, 3669–3695.

Kairy, S. K., Rometsch, P. A., Diao, K., Nie, J. F., Davies, C. H. J., & Birbilis, N., (2016). Exploring the electrochemistry of 6xxx series aluminum alloys as a function of Si to Mg ratio, Cu content, ageing conditions and microstructure, Electrochimica Acta, 190, 92–103.

Klemm, S. O., Schauer, J. C., Schuhmacher, B., & Hassel, A. W., (2011). High through put electrochemical screening and dissolution monitoring of Mg–Zn material libraries, Electrochimica Acta, 56, 9627–9636.

Krieg, R., Vimalanandan, A., & Rohwerder, M., (2014). Corrosion of zinc and Zn-Mg alloys with varying microstructures and magnesium contents, Journal of the Electrochemical Society, 161, C156–C161.

Le Bozec, N., Thierry, D., Rohwerder, M., Persson, D., Luckeneder, G., & Luwem, L., (2013). Effect of carbon dioxide on the atmospheric corrosion of Zn–Mg–Al coated steel, Corrosion Science, 74, 379–386.

Li, B., Dong, A., Zhu, G., Chu, S., Qian, H., Hu, C., Sun, B., & Wang, J., (2012). Investigation of the corrosion behaviors of continuously hot-dip galvanizing Zn–Mg coating, Surface and Coating Technology, 206, 3989–3999.

Persson, D., Thierry, D., LeBozec, N., & Prosek, T., (2013). In situ infrared reflection spectroscopy studies of the initial atmospheric corrosion of Zn–Al–Mg coated steel, Corrosion Science, 72, 54–63.

Prosek, T., Hagströmb, J., Persson, D., Fuertes, N., Lindberg, F., Chocholaty, O., Taxén, C., Serák, J., & Thierry, D., (2016). Effect of the microstructure of Zn-Al and Zn-Al-Mg model alloys on corrosion stability, Corrosion Science, 110, 71–81.

Prosek, T., Larché, N., Vlot, M., Goodwin, F., & Thierry, D., (2010). Corrosion performance of Zn–Al–Mg coatings in open and confined zones in conditions simulating automotive applications, Materials and Corrosion, 61, 412–420.

Prosek, T., Nazarov, A., Bexell, U., Thierry, D., & Serak, J., (2008). Corrosion mechanism of model zinc–magnesium alloys in atmospheric conditions, Corrosion Science, 50, 2216–2231.

Rodriguez, J., Chenoy, L., Roobroeck, A., Godet, S., & Olivier, M., (2016). Effect of the electrolyte pH on the corrosion mechanisms of Zn-Mg coated steel, Corrosion Science, 108, 47–59.

Salgueiro, M., Allély, C., Ogle, K., & Volovitch, P., (2015). Corrosion mechanisms of Zn(Mg, Al) coated steel in accelerated tests and natural exposure: 1. The role of electrolyte composition in the nature of corrosion products and relative corrosion rate, Corrosion Science, 90, 472–481.

Salgueiro, M., Allély, C., Ogle, K., & Volovitch, P., (2015). Corrosion mechanisms of Zn(Mg,Al) coated steel: the effect of HCO3− and NH4+ ions on the intrinsic reactivity of the coating, Electrochimica Acta, 153, 159–169.

Schuerz, S., Fleischanderl, M., Luckeneder, G. H., Preis, K., Haunschmied, T., Mori, G., & Kneissl, A. C., (2009). Corrosion behaviour of Zn–Al–Mg coated steel sheet in sodium chloride-containing environment, Corrosion Science, 51, 2355–2363.

Schürz, S., Luckeneder, G. H., Fleischanderl, M., Mack, P., Gsaller, H., Kneissl, A. C., & Mori, G., (2010). Chemistry of corrosion products on Zn–Al–Mg alloy coated steel, Corrosion Science 52, 3271–3279.

Thébault, F., Vuillemin, B., Oltra, R., Allely, C., Ogle, K., & Heintz, O., (2015). Influence of magnesium content on the corrosion resistance of the cut-edges of Zn–Mg-coated steel, Corrosion Science, 97, 100–106.

Vimalanandan, A., Bashir, A., & Rohwerder, M., (2014). Zn–Mg and Zn–Mg–Al alloys for improved corrosion protection of steel: some new aspects, Materials and Corrosion, 65, 392–400.

Volovitch, P., Allely, C., & Ogle, K., (2009). Understanding corrosion via corrosion product characterization: I. Case study of the role of Mg alloying in Zn–Mg coating on steel, Corrosion Science, 51, 1251–1262.

Yao, C., Lv, H., Zhu, T., Zheng, W., Yuan, X., & Gao, W., (2016). Effect of Mg content on microstructure and corrosion behavior of hot dipped Zn-Al-Mg coatings, Journal of Alloys and Compounds, 670, 239-248.

Yoo, J. D., Ogle, K., & Volovitch P., (2014). The effect of synthetic zinc corrosion products on corrosion of electrogalvanized steel. II. Zinc reactivity and galvanic coupling zinc/steel in presence of zinc corrosion products, Corrosion Science, 83, 32–37.

Zander, D., Pieper, C., & Köster, U. (2007). Influence of the casting method on microstructure and corrosion of AZ91 and AM50, in: K.U. Kainer (Ed.), Proceedings of the 7th International Conference on Magnesium Alloys and Their Applications, Wiley-VCH Verlag, Weinheim, 757–762.

Downloads

Publicado

25/01/2021

Como Citar

COSTA, A. N. C. .; SILVA, G. C. .; FERREIRA, E. A. .; NAKAZATO, R. Z. . Análise comparativa da resistência à corrosão de revestimentos de Zinco e Zn-Al-Mg em aço carbono. Research, Society and Development, [S. l.], v. 10, n. 1, p. e49810111973, 2021. DOI: 10.33448/rsd-v10i1.11973. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/11973. Acesso em: 22 nov. 2024.

Edição

Seção

Engenharias