Conteúdo de bioativos durante o desenvolvimento da acerola cv. BRS 238 (Frutacor)

Autores

DOI:

https://doi.org/10.33448/rsd-v10i2.12640

Palavras-chave:

Malpighia emarginata DC; Maturação; Atividade enzimática.

Resumo

O objetivo deste trabalho foi determinar caracteristicas de qualidade, o conteúdo de bioativos e a atividade de enzimas do metabolismo da vitamina C e dos compostos fenólicos durante o desenvolvimento da acerola BRS 238 (Frutacor). Frutos foram colhidos em cinco diferentes estádios de maturação e avaliados quanto as características físico-químicas e químicas de qualidade, assim como para o metabolismo de vitamina C e de polifenóis. Durante o desenvolvimento desses frutos houve um aumento na relação SS/AT, uma queda no conteúdo de clorofila, aumento no conteúdo de carotenoides, um declínio no conteúdo de vitamina C e polifenóis, todavia o conteúdo de flavonoides amarelos e antocianinas aumentaram. A atividade das enzimas do metabolismo da vitamina C, ascorbato oxidade (AO) e peroxidase do ascorbato (APX) diminuíram com o amadurecimento, enquanto para o metabolismo fenólicos, a atividade da fenilalanina amônia liase (PAL) aumentou e da polifenoloxidase (PPO) reduziu. Pode-se concluir que os frutos da aceroleira BRS 238 apresentaram alto conteúdo de compostos bioativos. Para extracção industrial e bioativos, esses frutos devem ser colhidos no estádio inicial, enquanto para consumo in natura, devem ser colhidos nos estádios finais do desenvolvimento.

Referências

Alamed, J., Chaiyasit, W., McClements, D. J., & Decker, E. A. (2009). Relationships between free radical scavenging and antioxidant activity in foods. Journal of agricultural and food chemistry, 57(7), 2969-2976.

Almeida, S. D. S., Alves, W. A. L., Araújo, S. A. D., Santana, J. C. C., Narain, N., & Souza, R. R. D. (2014). Use of simulated annealing in standardization and optimization of the acerola wine production. Food Science and Technology, 34(2), 292-297.

Anuário da agricultura brasileira. São Paulo: Instituto FNP, p. 448, 2019.

Araújo, J. (2004). Química de alimentos: teoria e prática. In Química de alimentos: teoria e prática (pp. 478-478).

Association of Official Analytical Chemistry. (2005). Official methods of Analysis of the Association of Official Analytical Chemistry. 18. ed. Maryland: AOAC.

Batista, P. F., Lima, M. A. C. D., Alves, R. E., & Façanha, R. V. (2018). Bioactive compounds and antioxidant activity in tropical fruits grown in the lower-middle São Francisco Valley. Revista Ciência Agronômica, 49(4), 616-623.

Bergmeyer, H. U. (1974). Methods of enzymatic analysis. Verlag Chemie.

Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical biochemistry, 72(1-2), 248-254.

Calgaro, M.; Braga, M. (2012). Coleção Plantar: acerola. Brasília, DF, 150 p.

Cardello, H. M. A., & Cardello, L. (1998). Teor de vitamina C, atividade de ascorbato oxidase e perfil sensorial de manga (Mangifera indica L.) var. Haden, durante o amadurecimento. Food Science and Technology, 18(2), 211-217.

Chen, J.; Wang, X. Experimental instruction of plant physiology. (2002). South China University of Technology Press, 1(3), 124.

Delgado-Vargas, F., Jiménez, A. R., & Paredes-López, O. (2000). Natural pigments: carotenoids, anthocyanins, and betalains—characteristics, biosynthesis, processing, and stability. Critical reviews in food science and nutrition, 40(3), 173-289.

Delva, L., & Schneider, R. G. (2013). Acerola (Malpighia emarginata DC): production, postharvest handling, nutrition, and biological activity. Food Reviews International, 29(2), 107-126.

El-Shora, H. M. (2002). Properties of phenylalanine ammonia-lyase from marrow cotyledons. Plant Science, 162(1), 1-7.

Figueiredo Neto, A., Reis, D., Alves, E., Gonçalves, E., Anjos, F. D., & Ferreira, M. (2014).

Determinação de vitamina c e avaliação físico-química em três variedades de acerola cultivadas em Petrolina-PE. Nucleus, 11(1), 83-92.

Foti, M., Piattelli, M., Amico, V., & Ruberto, G. (1994). Antioxidant activity of phenolic meroditerpenoids from marine algae. Journal of Photochemistry and Photobiology B: Biology, 26(2), 159-164.

Foyer, C. H., & Noctor, G. (2011). Ascorbate and glutathione: the heart of the redox hub. Plant physiology, 155(1), 2-18.

Francis, F. J. (1982). Analysis of anthocyanins. Anthocyanins as food colors, 1, 280.

Gomez, M. L. P., & Lajolo, F. M. (2008). Ascorbic acid metabolism in fruits: activity of enzymes involved in synthesis and degradation during ripening in mango and guava. Journal of the Science of Food and Agriculture, 88(5), 756-762.

Huber, L. S., & Rodriguez-Amaya, D. B. (2008). Flavonóis e flavonas: fontes brasileiras e fatores que influenciam a composição em alimentos. Alimentos e Nutrição, Araraquara, 19(1), 97-108.

Instituto Adolfo Lutz. (1985). Normas analíticas, métodos químicos e físicos para análises de alimentos, v. 1, 3 ed. São Paulo.

Instituto Brasileiro de Geografia e Estatística. SIDRA: levantamento sistemático da produção agrícola. Rio de Janeiro, 2018.

Larrauri, J. A., Rupérez, P., & Saura-Calixto, F. (1997). Effect of drying temperature on the stability of polyphenols and antioxidant activity of red grape pomace peels. Journal of agricultural and food chemistry, 45(4), 1390-1393.

Lilchtenthaler, H. K., & Wellburn, A. R. (1983). Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Journal Agricola Food Chemistry, Milão, v. 45, p. 1390-1393.

Lima, V. L., Mélo, E. A., Maciel, M. I. S., Prazeres, F. G., Musser, R. S., & Lima, D. E. (2005). Total phenolic and carotenoid contents in acerola genotypes harvested at three ripening stages. Food chemistry, 90(4), 565-568.

Liu, H., Song, L., You, Y., Li, Y., Duan, X., Jiang, Y., Joice, D. C., Ashraf, M., & Lu, W. (2011). Cold storage duration affects litchi fruit quality, membrane permeability, enzyme activities and energy charge during shelf time at ambient temperature. Postharvest Biology and Technology, 60(1), 24-30.

Maciel, M. I. S., Mélo, E., Lima, V., Souza, K. A., & Silva, W. (2010). Caracterização físico-química de frutos de genótipos de aceroleira (Malpighia emarginata DC). Food Science and Technology, 30(4), 865-869.

Mariano-Nasser, F. D. C., Nasser, M. D., Furlaneto, K. A., Ramos, J. A., Vieites, R. L., & Pagliarini, M. K. (2017). Bioactive compounds in different acerola fruit cultivares. Semina: Ciências Agrárias (Londrina), 38(4 Suppl. 1), 2505-2514.

Moreira, G. E. G., Costa, M. G. M., de Souza, A. C. R., de Brito, E. S., de Medeiros, M. D. F. D., & de Azeredo, H. M. (2009). Physical properties of spray dried acerola pomace extract as affected by temperature and drying aids. LWT-Food Science and Technology, 42(2), 641-645.

Mori, T., Sakurai, M., & Sakuta, M. (2001). Effects of conditioned medium on activities of PAL, CHS, DAHP synthase (DS-Co and DS-Mn) and anthocyanin production in suspension cultures of Fragaria ananassa. Plant Science, 160(2), 355-360.

Moura, C., de Aragão, F. A. S., Oliveira, L. D. S., Moreira, S., & de Miranda, M. R. A. (2012). Qualidade pós-colheita durante o amadurecimento de frutos de clones de aceroleira. Embrapa Agroindústria Tropical-Boletim de Pesquisa e Desenvolvimento (INFOTECA-E).

Murata, M., Noda, I., Homma, S. (1995). Enzymatic browning of apples on the market: relationship between browning, polyphenol content, and polyphenol oxidase. Hort Science, 42(10), 820-826.

Nakano, Y., & Asada, K. (1981). Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant and cell physiology, 22(5), 867-880.

Nasser, M. D., & Zonta, A. (2014). Caracterização de frutos de genótipos de aceroleira em função de estádios de maturação. Tecnologia & Ciência Agropecuária, João Pessoa, 8(5), 76-78.

Nasser, M. D., de Carvalho Mariano-Nasser, F. A., Furlaneto, K. A., Ramos, J. A., & Caetano, P. K. (2018). Composição da acerola de diferentes genótipos em duas épocas de colheita. Nativa, 6(1), 15-19.

Obanda, M., Owuor, P. O., & Taylor, S. J. (1997). Flavanol composition and caffeine content of green leaf as quality potential indicators of Kenyan black teas. Journal of the Science of Food and Agriculture, 74(2), 209-215.

Oliveira, L. D. S. (2012). Avaliação do metabolismo antioxidante durante o desenvolvimento de frutos de clones de aceroleira e sapotizeiro.

Oliveira, L. M. N., da Silva, L. M. R., de Lima, A. C. S., de Almeida, R. R., Ricardo, N. M. P. S., de Figueiredo, E. A. T., & de Figueiredo, R. W. (2020). Characterization of rutin, phenolic compounds and antioxidant capacity of pulps and by-products of tropical fruits. Research, Society and Development, 9(4), 42942812.

Oliveira, L. S., Rufino, M. S., Moura, C. F., Cavalcanti, F. R., Alves, R. E., & Miranda, M. R. (2011). The influence of processing and long-term storage on the antioxidant metabolism of acerola (Malpighia emarginata) purée. Brazilian Journal of Plant Physiology, 23(2), 151-160.

PARKIN, K. L. Enzimas. In.: DAMODARAN, S.; PARKIN, K.; FENNEMA, O.R. Química de Alimentos de Fennema. 4. ed. Porto Alegre: Artmed, 2010. 900 p.

Rabelo, M. C. (2016). Efeitos da luz pulsada sobre o metabolismo de vitamina ce compostos fenólicos em acerola (Malpighia emarginata DC).

Ribeiro, B. S., & de Freitas, S. T. (2020). Maturity stage at harvest and storage temperature to maintain postharvest quality of acerola fruit. Scientia Horticulturae, 260, 108901.

Rice-evans, C. A., Miller, N. J., Bolwell, P. G., Bramley, P. M., & Pridham, J. B. (1995). The relative antioxidant activities of plant-derived polyphenolic flavonoids. Free radical research, 22(4), 375-383.

Righetto, A. M., Netto, F. M., & Carraro, F. (2005). Chemical composition and antioxidant activity of juices from mature and immature acerola (Malpighia emarginata DC). Food science and technology international, 11(4), 315-321.

Ritzinger, R., & Ritzinger, C. H. S. P. (2011). Acerola. Embrapa Mandioca e Fruticultura-Artigo em periódico indexado (ALICE).

Ritzinger, R., Ritzinger, C. H. S. P., Fonseca, N., & Machado, C. D. F. (2018). Avanços na propagação da aceroleira. Revista Brasileira de Fruticultura, 40(3).

Rufino, M. D. S. M., Alves, R. E., de Brito, E. S., de Morais, S. M., Sampaio, C. D. G., Pérez-

Jimenez, J., & Saura-Calixto, F. D. (2007). Metodologia científica: determinação da atividade antioxidante total em frutas pela captura do radical livre DPPH. Embrapa Agroindústria Tropical-Comunicado Técnico (INFOTECA-E).

Santos, S. M., De Vasconcelos, A. M., Oliveira, V. S., Clemente, E., & Costa, J. M. (2012). Evaluation of physical and physicochemical characteristics of Malpighia emarginata DC from the state of Ceará. International Journal of Biochemistry Research & Review, 2(4), 152.

Sojo, M. M., Nunez-Delicado, E., García-Carmona, F., & Sánchez-Ferrer, A. (1998). Partial purification of a banana polyphenol oxidase using Triton X-114 and PEG 8000 for removal of polyphenols. Journal of Agricultural and Food Chemistry, 46(12), 4924-4930.

Souza, K. O. D. (2012). Qualidade e metabolismo antioxidante no desenvolvimento de frutos de clones de aceroleira.

Souza, K. O., Moura, C. F. H., Brito, E. S., Miranda, M. R. A. (2014). Antioxidant compounds and total antioxidant activity in fruits of acerola from cv. Flor Branca, Florida Sweet and BRS 366. Revista Brasileira de Fruticultura, 36(2), 294-304.

Uenojo, M., Maróstica Junior, M. R., & Pastore, G. M. (2007). Carotenóides: propriedades, aplicações e biotransformação para formação de compostos de aroma. Química Nova, 30(3), 616-622.

Vendramini, A. L., & Trugo, L. C. (2000). Chemical composition of acerola fruit (Malpighia punicifolia L.) at three stages of maturity. Food Chemistry, 71(2), 195-198.

Viana, E. D. S., Reis, R., Ritzinger, R., de Jesus, J. L., Santos Júnior, R. D. S., & Cordeiro, Z. (2017).

Caracterização físico-química e de compostos bioativos de acerola orgânica. Embrapa Mandioca e Fruticultura-Boletim de Pesquisa e Desenvolvimento (INFOTECA-E).

Yan, S., Li, L., He, L., Liang, L., & Li, X. (2013). Maturity and cooling rate affects browning, polyphenol oxidase activity and gene expression of ‘Yali’pears during storage. Postharvest Biology and Technology, 85, 39-44.

Yang, Z., Zheng, Y., & Cao, S. (2009). Effect of high oxygen atmosphere storage on quality, antioxidant enzymes, and DPPH-radical scavenging activity of Chinese bayberry fruit. Journal of agricultural and food chemistry, 57(1), 176-181.

Zeraik, A. E., Souza, F. S. A. D., Fatibello-Filho, O., & Leite, O. D. (2008). Desenvolvimento de um spot test para o monitoramento da atividade da peroxidase em um procedimento de purificação. Química Nova, 31(4), 731-734.

Zimmermann, P. E. T. R. A., & Zentgraf, U. L. R. I. K. E. (2005). The correlation between oxidative stress and leaf senescence during plant development. Cellular and Molecular Biology Letters, 10(3), 515.

Downloads

Publicado

21/02/2021

Como Citar

GOMES FILHO, A. A. P. .; PEREIRA, J. A. F. .; MOURA, C. F. H. .; MIRANDA, M. R. A. de . Conteúdo de bioativos durante o desenvolvimento da acerola cv. BRS 238 (Frutacor). Research, Society and Development, [S. l.], v. 10, n. 2, p. e42410212640, 2021. DOI: 10.33448/rsd-v10i2.12640. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/12640. Acesso em: 30 jun. 2024.

Edição

Seção

Ciências Agrárias e Biológicas