Atividade de enzimas do sistema de defesa antioxidante de tilápias (Oreochromis niloticus) como modelo de exposição à nanopartícula de dióxido de titânio (TiO2)

Autores

DOI:

https://doi.org/10.33448/rsd-v10i5.12829

Palavras-chave:

Nanoecotoxicologia; Enzimas antioxidantes; Catalase; Glutationa S-transferase.

Resumo

Os biomarcadores bioquímicos de peixes podem ser ferramentas úteis na investigação da presença de nanopartículas (NPs) no sistema aquático. Entretanto, é de suma importância conhecer as respostas desses biomarcadores frente a exposição a esse xenobiotico para se tentar estabelecer um modelo para monitoramento biológico. Assim, nosso objetivo foi determinar a resposta das enzimas catalase (CAT) e glutationa S-transferase (GST) de tilápias (Oreochromis niloticus) após 48 e 96h de exposição a nanopartícula de dióxido de titânio (NP-TiO2). Para tanto, 10 peixes foram expostos a: 0 (controle), 1, 5, 10 e 50 mg.L-1 da NP-TiO2. Em seguida, o fígado foi utilizado para a determinação dos biomarcadores. Nós não observamos variação significativa da CAT nas tilápias expostas durante 48h a NP. Entretanto, após 96h a CAT foi maior nos animais expostos as maiores concentrações testadas (10 e 50 mg.L-1). Ainda nessas concentrações, a atividade foi maior nos animais expostos durante 96h. Para a GST, nas primeiras 48h a atividade foi menor nos animais expostos a 1, 5 e 50 mg.L-1 de TiO2, enquanto que, na exposição de 96 h a maior atividade da GST foi observada nos animais expostos a 50 mg.L-1. Comparando-se o tempo de exposição, em todas as concentrações testadas, a atividade da GST hepática foi maior nos animais expostos durante 96h. Assim, além da concentração, o tempo de exposição a NP parece influenciar na resposta das enzimas, aumentando sua atividade.

Referências

Aebi, H. (1984). Calalase in vitro. Methods in Enzymology, 105, 121-126. https://doi.org/10.1016/S0076-6879(84)05016-3

Abdelazim, A. M., Saadeldin, I. M., Swelum, A. A., Afifi, M. M. & Alkaladi A. (2018). Oxidative stress in the muscles of the fish Nile Tilapia caused by zinc oxide nanoparticles and its modulation by vitamins C and E. Oxidative Medicine Celluler Longevity, 1-9. https://doi.org/10.1155/2018/6926712

Benavides, M., Fernandez-Lodeiro, J., Coelho, P., Lodeiro, C. & Diniz, M. S. (2016). Single and combined effects of aluminum (Al2O3) and zinc (ZnO) oxide nanoparticles in a freshwater fish, Carassius auratus. Environmental Science and Pollution Research, 23(24), 24578-24591. DOI 10.1007/s11356-016-7915-3

Bobori, D., Dimitriadi, A., Karasialia, S., Tsoumaki-Tsouroufli, P., Mastora, M., Kastrinaki, G., Feidantsis, K., Alice Printzi, A., Koumoundouros, G. & Kaloyiannic, M. (2020). Common mechanisms activated in the tissues of aquatic and terrestrial animal models after TiO2 nanoparticles exposure. Environment International, 138 (105611), 1-11. https://doi.org/10.1016/j.envint.2020.105611

Canesi, L., Fabbri, R., Gallo, G., Vallotto, D., Marcomini, A. & Pojana, G., 2010. Biomarkers in Mytilus galloprovincialis exposed to suspensions of selected nanoparticles (Nano carbon black, C60 fullerene, Nano-TiO2, Nano-SIO2). Aquatic Toxicology, 100(2), 168-177. doi: 10.1016/j.aquatox.2010.04.009

Canli, E. G., Dogan, A. & Canli, M. (2018). Serum biomarker levels alter following nanoparticle (Al2O3, CuO, TiO2) exposures in freshwater fish (Oreochromis niloticus). Environmental Toxicology and Pharmacology, 62, 181-187. https://doi.org/10.1016/j.etap.2018.07.009

Carmo, T. L. L., Azevedo, V. C., Siqueira, P. R., Galvão, T. D., Santos, F. A., Martinez, C. B. R., Appoloni, C. R. & Fernandes, M. N. (2018). Reactive oxygen species and other biochemical and morphological biomarkers in the gills and kidneys of the Neotropical freshwater fish, Prochilodus lineatus, exposed to titanium dioxide (TiO2) nanoparticles. Environmental Science and Pollution Research, 25, 22963-22976. https://doi.org/10.1007/s11356-018-2393-4

Carmo, T. L. L., Siqueira, P. R., Azevedo, V. C., Tavares, D., Pesenti, E. C., Cestari, M. M., Martinez, C. B. R & Fernandes, M. N. (2019). Overview of the toxic effects of titanium dioxide nanoparticles in blood, liver, muscles, and brain of a Neotropical detritivorous fish. Environmental Toxicology, 34(4), 457-468. DOI: 10.1002/tox.22699

Cheung, C. C. C., Zheng, G. J., Li, A. M. Y., Richardson, B. J. & Lam, P. K. S. (2001). Relationship between tissue concentrations of polycyclic aromatic hydrocarbons and antioxidative responses of marine mussels, Perna viridis. Aquatic Toxicology, 52: 189-203. https://doi.org/10.1016/S0166-445X(00)00145-4

Clemente, Z., Castro, V. L., Feitosa, L. O., Jonsson, C. M., Maia, A. H. N. & Fraceto, L. F. (2013). Fish exposure to nano-TiO2 under different experimental conditions: Methodological aspects for nanoecotoxicology investigations. Science of the Total Environmental, 463-464, 647-656. http://dx.doi.org/10.1016/j.scitotenv.2013.06.022

Diniz, M. S., Matos, A. A., Lourenço, J., Castro, L., Peres, I., Mendonça, E. & Picado A. (2013). Histological and biochemical effects of exposure to TiO2 nanoparticles in livers of two freshwater fish species: Carassius auratus and Danio rerio. Microscopy and Microanalysis, 1-10. doi:10.1017/S1431927613013238

Hajirezaee, S., Mohammadi, G., Naserabad, S. S. (2020). The protective effects of vitamin C on mon carp (Cyprinus carpio) exposed to titanium oxide nanoparticles (TiO2-NPs). Aquaculture, 518(734743), 1-12. https://doi.org/10.1016/j.aquaculture.2019.734734

Hao, L., Wang, Z. & Xing, B. (2009). Effect of sub-acute exposure to TiO2 nanoparticles on oxidative stress and histopathological changes in Juvenile Carp (Cyprinus carpio). Journal of Environmental Science, 21, 1459-1466. DOI: 10.1016/S1001-0742(08)62440-7

Hou, J., Wang. L., Wang, C., Zhang, S., Liu, H., Li. S. & Wang, X. (2019). Toxicity and mechanisms of action of titanium dioxide nanoparticles in living organisms. Journal of Environmental Science, 75, 40-53. https://doi.org/10.1016/j.jes.2018.06.010

Huang, X., Liu, Z., Xie, Z., Dupont, S., Huang, W., Wu, F., Kong, H., Liu, L., Sui, Y., Lin, D., Lu, W., Hu, M. & Wang. Y. (2018). Oxidative stress induced by titanium dioxide nanoparticles increases under seawater acidification in the thick shell mussel Mytilus coruscus. Marine Environmetal Research, 137, 49-59. https://doi.org/10.1016/j.marenvres.2018.02.029

Kang, S. J., Kim, B. M., Lee, Y. J. & Chung, H. W. (2008). Titanium dioxide nanoparticles trigger p53-mediated damage response in peripheral blood lymphocytes. Environmental and Molecular Mutagenesis, 49, 399-405. https://doi.org/10.1002/em.20399

Karthigarani, M. & Navaraj, D.P.S. (2012). Impact of nanoparticle on enzymes activity in Oreochromis mossambicus. Internation Journal of Scientific & Technology, 1(10), 13-17.

Keen, J. H., Habig, W. H. & Jakoby, W. B. (1976). Mechanism for the several activities of the glutathione S-transferases. Journal of Biological Chemistry, 251(20), 6183-6188.

Keller, A. A., McFerran, S., Lazareva, A. & Suh, S. (2013). Global life cycle releases of engineered nanomaterials. Journal of Nanoparticules Research, 15(1692). doi:10.1007/s11051-013-1692-4

Kim, K. T., Klaine, S. J., Cho, J., Kim, S. H. & Kim, S. D. (2010). Oxidative stress responses of Daphnia magna exposed to TiO2 nanoparticles according to size fraction. Science of the Total Environmental, 408(10), 2268-2272. doi:10.1016/j.scitotenv.2010.01.041

Mahaling, B. & Dinabandhu, A. (2018). Nanotoxicology: the emerging nanoresearch. Sciencia Horticulture, 3(7), 14-16.

Martirosyan, A. & Schneider, Y. J. (2014). Engineered nanomaterials in food: Implications for food safety and consumer health. International Journal of Environmental Research and Public Health, 11(6), 5720-5750. doi:10.3390/ijerph110605720

Paital, B. (2018). Removing small non-enzymatic molecules for biochemical assay of redox regulatory enzymes; An exemplary comments on “Antioxidant responses in gills and digestive gland of oyster Crassostrea madrasensis (Preston) under lead exposure. Ecotoxicology and Environmental Safety, 154, 337–340. https://doi.org/10.1016/j.ecoenv.2018.01.051

Pham, C. H., Yi, J. & Gu, M. B. (2012). Biomarker gene response in male Medaka (Oryzias latipes) chronically exposed to silver nanoparticle. Ecotoxicology and Environmental Safety, 78: 239-245. doi:10.1016/j.ecoenv.2011.11.034

Pirsaheb, M., Azadi, N. A., Miglietta, M. L., Sayadi, M. H., Blahova, J., Fathi, M. & Mansouri, B. (2019). Toxicological effects of transition metal-doped titanium dioxide nanoparticles on goldfish (Carassius auratus) and common carp (Cyprinus carpio). Chemosphere; 215: 904-915. https://doi.org/10.1016/j.chemosphere.2018.10.111

Reeves, J. F., Davies, S. J., Dodd, N. J. F. & Jha, A. N. (2008). Hydroxyl radicals (OH) are associated with titanium dioxide (TiO2) nanoparticle induced cytotoxicity and oxidative DNA damage in fish cells. Mutation Research/Fundamental and molecular mechanisms of mutagenesis; 640: 113-122. doi:10.1016/j.mrfmmm.2007.12.010

Valavanidis, A., Vlahogianni, T., Dassenakis, M. & Scoullos, M. (2006). Molecular biomarkers of oxidative stress in aquatic organisms in relation to toxic environmental pollutants. Ecotoxicology and Environmental Safety, 64, 178-189. doi:10.1016/j.ecoenv.2005.03.013

Varela-Valencia, R., Gómez-Ortiz, N., Oskam, G., Coss, R., Rubio-Piña, J., Río-García, M., Albores-Medina, A. & Zapata-Perez, O. (2014). The effect of titanium dioxide nanoparticles on antioxidant gene expression in tilapia (Oreochromis niloticus). Journal of Nanoparticules Research, 16 (2369), 1-12. doi: 10.1007/s11051-014-2369-3

Xiong, D., Fang, T., Yu, L., Sima, X. & Zhu, W. (2011). Effects of nano-scale TiO2, ZnO and their bulk counterparts on zebrafish: acute toxicity, oxidative stress and oxidative damage. Science of the Total Environmental, 409: 1444-1452. doi:10.1016/j.scitotenv.2011.01.015

Zhang, X., Sun, H., Zhang, Z., Niu, Q., Chen, Y. & Crittenden, J. C. (2007). Enhanced bioaccumulation of cadmium in carp in the presence of titanium dioxide nanoparticles. Chemosphere, 67(1), 160-166. https://doi.org/10.1016/j.chemosphere.2006.09.003

Zhang, Y., Qiang, L., Yuan, Y., Wu, W., Sun, B. & Zhu, L. (2018). Impacts of titanium dioxide nanoparticles on transformation of silver nanoparticles in aquatic environments. Environmental Science Nano, 5(5): 1191-1199. https://doi.org/10.1039/C8EN00044A

Zhang, H.M., Cao, J., Tang, B.P. & Wang, Y.Q. (2014). Effect of TiO2 nanoparticles on the structure and activity of catalase. Chemico-Biological Interactions, 219, 168-174. http://dx.doi.org/10.1016/j.cbi.2014.

Downloads

Publicado

13/05/2021

Como Citar

SANTANA, T. dos S. .; SANTOS, M. B. dos .; WINKALER, E. U. . Atividade de enzimas do sistema de defesa antioxidante de tilápias (Oreochromis niloticus) como modelo de exposição à nanopartícula de dióxido de titânio (TiO2). Research, Society and Development, [S. l.], v. 10, n. 5, p. e46810512829, 2021. DOI: 10.33448/rsd-v10i5.12829. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/12829. Acesso em: 3 out. 2024.

Edição

Seção

Ciências Agrárias e Biológicas