Sustentabilidade agroindustrial: Processos Oxidativos Avançados (POA) utilizando bioadsorventes brasileiros

Autores

DOI:

https://doi.org/10.33448/rsd-v10i5.12830

Palavras-chave:

Resíduo brasileiro; Casca de banana; Casca de mandioca; POAs; Mecanismos de adsorção.

Resumo

O objetivo deste trabalho foi avaliar bioadsorventes originários de resíduos agroindustriais brasileiros (casca de banana e mandioca) a serem utilizados na eliminação do poluente modelo azul de metileno (MB). Foram estudados neste contexto o processo de adsorção em diversas condições experimentais (temperatura de 25 a 50°C, massa do bioadsorventes variando de 0,5 a 1,0 g), assim como a modelagem cinética utilizando três diferentes modelos: pseudoprimeira ordem, pseudosegunda ordem e difusão intrapartícula. Foi estudado posteriormente os Processos Oxidativos Avançados (POA) UVc-AC e UV-C/Casca em diferentes condições (temperatura de 25 a 50°C, e potência da lâmpada 11 a 33 W). Os resultados obtidos foram promissores, onde os melhores resultados nos processos de adsorção foram aqueles utilizando o bioadsorvente casca de banana, com uma massa de 0,5 g e uma temperatura de 50 °C. Para os POAs utilizados, a melhor cinética de degradação do MB foi na condição C4 (55°C, 33 W) utilizando o resíduo casca de banana, mostrando um resíduo agroindustrial satisfatório e eficiente á ser aplicado em combinação com o UV, contribuindo para a sustentabilidade agroindustrial e para a melhoria dos parâmetros de qualidade da água.

Referências

Aguiar, L. (2006). Avaliação do processo de concentração osmótica para obtenção de banana-passa. 2006. 103 f (Doctoral dissertation, Dissertação (Mestrado em Tecnologia de Alimentos)-Faculdade de Engenharia de Alimentos, Universidade Estadual de Campinas, Campinas).

Ahmad, A. L., Loh, M. M., & Aziz, J. A. (2007). Preparation and characterization of activated carbon from oil palm wood and its evaluation on methylene blue adsorption. Dyes and pigments, 75(2), 263-272.

Ali, H. (2010). Biodegradation of synthetic dyes—a review. Water, Air, & Soil Pollution, 213(1), 251-273.

Alver, E., Metin, A. Ü., & Brouers, F. (2020). Methylene blue adsorption on magnetic alginate/rice husk bio-composite. International journal of biological macromolecules, 154, 104-113.

Asfaram, A., Ghaedi, M., Dashtian, K., & Ghezelbash, G. R. (2018). Preparation and characterization of Mn0. 4Zn0. 6Fe2O4 nanoparticles supported on dead cells of Yarrowia lipolytica as a novel and efficient adsorbent/biosorbent composite for the removal of azo food dyes: central composite design optimization study. ACS Sustainable Chemistry & Engineering, 6(4), 4549-4563.

Asfour, H. M., Fadali, O. A., Nassar, M. M., & El‐Geundi, M. S. (1985). Equilibrium studies on adsorption of basic dyes on hardwood. Journal of Chemical Technology and Biotechnology. Chemical Technology, 35(1), 21-27.

Belaid, K. D., Kacha, S., Kameche, M., & Derriche, Z. (2013). Adsorption kinetics of some textile dyes onto granular activated carbon. Journal of Environmental Chemical Engineering, 1(3), 496-503.

Boehm, H. P. (2002). Surface oxides on carbon and their analysis: a critical assessment. Carbon, 40(2), 145-149.

Coha, M., Farinelli, G., Tiraferri, A., Minella, M., & Vione, D. (2021). Advanced oxidation processes in the removal of organic substances from produced water: Potential, configurations, and research needs. Chemical Engineering Journal, 128668.

Dąbek, L., Ozimina, E., & Picheta-Oleś, A. (2012). Applying the combined processes of sorption and oxidation to remove organic compounds from an aqueous environment using the example of p-chlorophenol. Ecological Chemistry and Engineering. A, 19(3), 275-286.a

Dabek, L., Ozimina, E., & Picheta-Oles, A. (2012). Dye removal efficiency of virgin activated carbon and activated carbon regenerated with Fenton's reagent. Environment Protection Engineering, 38(1), 5-13.b

de Sousa, D. N. R., Insa, S., Mozeto, A. A., Petrovic, M., Chaves, T. F., & Fadini, P. S. (2018). Equilibrium and kinetic studies of the adsorption of antibiotics from aqueous solutions onto powdered zeolites. Chemosphere, 205, 137-146.

de Moraes, M. F., de Oliveira, T. F., Cuellar, J., & Castiglioni, G. L. (2017). Phenol degradation using adsorption methods, advanced oxidative process (H2O2/UV) and H2O2/UV/activated carbon coupling: influence of homogeneous and heterogeneous phase. Desalination and Water Treatment, 100, 38-45.

de Almeida, M. C., de Oliveira, T. F., & de Sa, F. P. (2020). The elimination of cancerous pollutants by an advanced oxidation processes and adsorption in monosolute solutions mixtures in water. Desalination and water treatment, 191, 292-299.

Doğan, M., & Alkan, M. (2003). Adsorption kinetics of methyl violet onto perlite. Chemosphere, 50(4), 517-528.

Ezzatahmadi, N., Ayoko, G. A., Millar, G. J., Speight, R., Yan, C., Li, J., ... & Xi, Y. (2017). Clay-supported nanoscale zero-valent iron composite materials for the remediation of contaminated aqueous solutions: a review. Chemical engineering journal, 312, 336-350.

Fadillah, G., Saleh, T. A., Wahyuningsih, S., Putri, E. N. K., & Febrianastuti, S. (2019). Electrochemical removal of methylene blue using alginate-modified graphene adsorbents. Chemical Engineering Journal, 378, 122140.

Flouret, A., de Almeida, M. C., de Oliveira, T. F., & de Sá, F. P. (2018). Advanced treatment of phenol by H2O2/UV/activated carbon coupling: Influence of homogeneous and heterogeneous phase. The Canadian Journal of Chemical Engineering, 96(9), 1979-1985.

Habib, I. Y., Burhan, J., Jaladi, F., Lim, C. M., Usman, A., Kumara, N. T. R. N., ... & Mahadi, A. H. (2020). Effect of Cr doping in CeO2 nanostructures on photocatalysis and H2O2 assisted methylene blue dye degradation. Catalysis Today.

Iheukwumere, F. C., Ndubuisi, E. C., Mazi, E. A., & Onyekwere, M. U. (2008). Performance, nutrient utilization and organ characteristics of broilers fed cassava leaf meal (Manihot esculenta Crantz). Pakistan Journal of Nutrition, 7(1), 13-16.

Islam, M. A., Ali, I., Karim, S. A., Firoz, M. S. H., Chowdhury, A. N., Morton, D. W., & Angove, M. J. (2019). Removal of dye from polluted water using novel nano manganese oxide-based materials. Journal of Water Process Engineering, 32, 100911.

Kousha, M., Daneshvar, E., Dopeikar, H., Taghavi, D., & Bhatnagar, A. (2012). Box–Behnken design optimization of Acid Black 1 dye biosorption by different brown macroalgae. Chemical Engineering Journal, 179, 158-168.

Li, Z., Hanafy, H., Zhang, L., Sellaoui, L., Netto, M. S., Oliveira, M. L., ... & Li, Q. (2020). Adsorption of congo red and methylene blue dyes on an ashitaba waste and a walnut shell-based activated carbon from aqueous solutions: Experiments, characterization and physical interpretations. Chemical Engineering Journal, 388, 124263.

Li, Z., Sellaoui, L., Dotto, G. L., Lamine, A. B., Bonilla-Petriciolet, A., Hanafy, H., ... & Erto, A. (2019). Interpretation of the adsorption mechanism of Reactive Black 5 and Ponceau 4R dyes on chitosan/polyamide nanofibers via advanced statistical physics model. Journal of Molecular Liquids, 285, 165-170.

Medellin-Castillo, N. A., Ocampo-Pérez, R., Leyva-Ramos, R., Sanchez-Polo, M., Rivera-Utrilla, J., & Méndez-Díaz, J. D. (2013). Removal of diethyl phthalate from water solution by adsorption, photo-oxidation, ozonation and advanced oxidation process (UV/H2O2, O3/H2O2 and O3/activated carbon). Science of the total environment, 442, 26-35.

Mittal, A., Mittal, J., & Kurup, L. (2006). Adsorption isotherms, kinetics and column operations for the removal of hazardous dye, Tartrazine from aqueous solutions using waste materials—Bottom Ash and De-Oiled Soya, as adsorbents. Journal of hazardous materials, 136(3), 567-578.

Moraes, J. T., Salamanca-Neto, C. A. R., Švorc, Ľ., & Sartori, E. R. (2017). Advanced sensing performance towards simultaneous determination of quaternary mixture of antihypertensives using boron-doped diamond electrode. Microchemical Journal, 134, 173-180.

de Oliveira, T. F., Chedeville, O., Cagnon, B., & Fauduet, H. (2011). Degradation kinetics of DEP in water by ozone/activated carbon process: Influence of pH. Desalination, 269(1-3), 271-275.

Pang, X., Sellaoui, L., Franco, D., Dotto, G. L., Georgin, J., Bajahzar, A., ... & Li, Z. (2019). Adsorption of crystal violet on biomasses from pecan nutshell, para chestnut husk, araucaria bark and palm cactus: experimental study and theoretical modeling via monolayer and double layer statistical physics models. Chemical Engineering Journal, 378, 122101.

Parvin, S., Rahman, M. W., Saha, I., Alam, M. J., & Khan, M. M. R. (2019). Coconut tree bark as a potential low-cost adsorbent for the removal of methylene blue from wastewater. DESALIN WATER TREAT, 146, 385-392.

Ponnusami, V., Vikram, S., & Srivastava, S. N. (2008). Guava (Psidium guajava) leaf powder: novel adsorbent for removal of methylene blue from aqueous solutions. Journal of hazardous materials, 152(1), 276-286.

Reddy, P. M. K., Verma, P., & Subrahmanyam, C. (2016). Bio-waste derived adsorbent material for methylene blue adsorption. Journal of the Taiwan Institute of Chemical Engineers, 58, 500-508.

Rivera-Utrilla, J., & Sánchez-Polo, M. (2002). Ozonation of 1, 3, 6-naphthalenetrisulphonic acid catalysed by activated carbon in aqueous phase. Applied Catalysis B: Environmental, 39(4), 319-329.

Rivera-Utrilla, J., Méndez-Díaz, J., Sánchez-Polo, M., Ferro-García, M. A., & Bautista-Toledo, I. (2006). Removal of the surfactant sodium dodecylbenzenesulphonate from water by simultaneous use of ozone and powdered activated carbon: Comparison with systems based on O3 and O3/H2O2. Water research, 40(8), 1717-1725.

Sánchez-Polo, M., von Gunten, U., & Rivera-Utrilla, J. (2005). Efficiency of activated carbon to transform ozone into OH radicals: influence of operational parameters. Water research, 39(14), 3189-3198.

Santhosh, C., Velmurugan, V., Jacob, G., Jeong, S. K., Grace, A. N., & Bhatnagar, A. (2016). Role of nanomaterials in water treatment applications: a review. Chemical Engineering Journal, 306, 1116-1137.

Shooto, N. D., Thabede, P. M., Bhila, B., Moloto, H., & Naidoo, E. B. (2020). Lead ions and methylene blue dye removal from aqueous solution by mucuna beans (velvet beans) adsorbents. Journal of Environmental Chemical Engineering, 8(2), 103557.

Somsesta, N., Sricharoenchaikul, V., & Aht-Ong, D. (2020). Adsorption removal of methylene blue onto activated carbon/cellulose biocomposite films: equilibrium and kinetic studies. Materials Chemistry and Physics, 240, 122221.

Stoeckli, F., López-Ramón, M. V., Hugi-Cleary, D., & Guillot, A. (2001). Micropore sizes in activated carbons determined from the Dubinin–Radushkevich equation. Carbon, 39(7), 1115-1116.

Uddin, M. T., Islam, M. A., Mahmud, S., & Rukanuzzaman, M. (2009). Adsorptive removal of methylene blue by tea waste. Journal of Hazardous Materials, 164(1), 53-60.

Valdés, H., & Zaror, C. A. (2006). Heterogeneous and homogeneous catalytic ozonation of benzothiazole promoted by activated carbon: kinetic approach. Chemosphere, 65(7), 1131-1136.

Vieira Filho, J. E. R., & Fishlow, A. (2017). Agricultura e indústria no Brasil: inovação e competitividade.

Yagub, M. T., Sen, T. K., Afroze, S., & Ang, H. M. (2014). Dye and its removal from aqueous solution by adsorption: a review. Advances in colloid and interface science, 209, 172-184.

Zare, E. N., Lakouraj, M. M., & Ramezani, A. (2016). Efficient sorption of Pb (II) from an aqueous solution using a poly (aniline-co-3-aminobenzoic acid)-based magnetic core–shell nanocomposite. New Journal of Chemistry, 40(3), 2521-2529.

Zhang, T., Walawender, W. P., Fan, L. T., Fan, M., Daugaard, D., & Brown, R. C. (2004). Preparation of activated carbon from forest and agricultural residues through CO2 activation. Chemical Engineering Journal, 105(1-2), 53-59.

Zhang, W., Zhou, C., Zhou, W., Lei, A., Zhang, Q., Wan, Q., & Zou, B. (2011). Fast and considerable adsorption of methylene blue dye onto graphene oxide. Bulletin of environmental contamination and toxicology, 87(1), 86-90.

Zhou, Y., Lu, J., Zhou, Y., & Liu, Y. (2019). Recent advances for dyes removal using novel adsorbents: a review. Environmental pollution, 252, 352-365.

Downloads

Publicado

11/05/2021

Como Citar

MARTINS, T. A. .; ALMEIDA, M. C. de .; LOPES, I. C. G. .; MORENO, I. F. .; OLIVEIRA, T. F. de . Sustentabilidade agroindustrial: Processos Oxidativos Avançados (POA) utilizando bioadsorventes brasileiros. Research, Society and Development, [S. l.], v. 10, n. 5, p. e27310512830, 2021. DOI: 10.33448/rsd-v10i5.12830. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/12830. Acesso em: 17 jul. 2024.

Edição

Seção

Ciências Agrárias e Biológicas