Plantas aquáticas em ecotecnologias: perspectivas para fitorremediação de ferro e manganês

Autores

DOI:

https://doi.org/10.33448/rsd-v10i3.13320

Palavras-chave:

Macrófitas aquática; Biotecnologia; Elementos traços; Água doce.

Resumo

Fitorremediação consiste no uso de plantas para mitigação de ambientes poluídos, tanto os terrestres como os aquáticos. Embora esta ecotecnologia tem crescido consideravelmente nas últimas décadas, a expansão de sua aplicação ainda esbarra no desafio para selecionar espécies de plantas com tal potencial. Neste trabalho, duas espécies de macrófitas aquáticas, Spirodela polyrhiza e Ricciocarpus natans, foram estudadas em experimentos laboratoriais para avaliação de seu desempenho na remoção de manganês (Mn) e do ferro (Fe) em solução. Plantas de S. polyrhiza foram testadas para ambos metais e submetidas às concentrações de 10, 15, 20, 25 e 30 mg/L de Mn e Fe. Enquanto plantas de R. natans foram submetidas às concentrações de 1, 2, 6 e 18 mg/L de Fe. Os resultados mostraram que plantas de S. polyrizha foram capazes de remover 34% do Mn e até 80% do Fe adicionados na solução. Entretanto, a redução da biomassa e do conteúdo de clorofila foi detectada nessas plantas.  As plantas de R. natans, removeram até 50% do Fe nas concentrações de 2, 6 e 18 mg/L e não demonstraram queda da biomassa e clorofila em nenhuma das concentrações testadas, evidenciando resultados promissores para a fitorremediação de Fe. Estudos com experimentos de campo são necessários para considerar as variantes ambientais envolvidas no processo de remediação. No entanto, os achados aqui apresentados trazem, à luz da ciência, contribuições significantes para o conhecimento fitorremediador de S. polyrizha e R. natans, espécies aquáticas amplamente distribuídas nos corpos d’ água brasileiros.

Referências

Adamski, J. M. (2011). Avaliações morfofisiológicas de Ipomoea batatas L. em função da concentração de ferro. Dissertação de mestrado em Biologia. Universidade Federal de Pelotas, Pelotas.

Augusto, L.G.S, Gurgel, I. G.D., Câmara Neto, H. F., Melo, C.H. & Costa A.M. (2012). O contexto global e nacional frente aos desafios do acesso adequado à água para consumo humano. Ciência & Saúde Coletiva, 17(6), 1511-1522.

Arnon, D. I. (1949). Copper enzymes in isolated chloroplast polyphenol-oxidases in Betavulgaris. Plant Physiology, 24 (1), 1-15.

Bai, L., Liu, Xiao-Long & Hu, J., Li, Ju., Wang, Zhong-Liang, Han, G., Li, Si-Liang & Liu, Cong-Qiang. (2018). Heavy Metal Accumulation in Common Aquatic Plants in Rivers and Lakes in the Taihu Basin. International Journal of Environmental Research and Public Health, 15(12), 2857.

Barceló J. & Poschenrieder C. (1990). Plant water relations as affected by heavy metal stress: A review. Journal of Plant Nutrition, 13(1), 1-37.

Brisson, J. & Chazarenc, F. (2009). Maximizing pollutant removal in constructed wetlands: Should we pay more attention to macrophyte species selection? Science of the Total Environment. 407(13), 3923-3930.

Caldwell, C.R. (1998). Effect of elevated manganese on the ultraviolet and blue light absorbing compounds of cucumber cotyledon and leaf tissues. Journal of Plant Nutrition, 21(3), 435-445.

Chatterjee, C., Gopal, R. & Dube, B. K. (2006). Impact of iron stress on biomass, yield,metabolism and quality of potato (Solanum tuberosum L.). Scientia Horticulturae, 108(1), 1-6.

Clairmont, K. B., Hagar, W. G. & Davis, E. A. (1986). Manganese toxicity to chlorophyllsynthesis in Tobacco Callus. Plant Physiology, 80, 291-293.

Cruz, M. B., Mendes P. l, Aguiar, R., Karam D. & Mello J W. V. (2010). IX Congreso Latino americano y del Caribe de Ingeniería Agrícola - CLIA XXXIX Congresso Brasileiro de Engenharia.

Csatorday, K., Gombos, Z. & Szalontai, B. (1984). Mn2+ and CO2+ toxicity in chlorophyll biosynthesis. Proceedings of the National Academy of Sciences, 81, 476-478.

Cunningham, S. & Ow, D. W. (1996). Promises and prospects of phytoremediation. Plant Physiology, 110, 715-719.

Fecht-Christoffers, M. M., Maier, P., & Horst, W. J. (2003). Apoplastic peroxidases and ascorbate are involved in manganese toxicity and tolerance of Vigna unguiculata. Physiologia Plantarum, 177, 237-244.

Fernando, D. R., Bakkaus, E. J., Perrier, N., Baker, A. J. M., Woodrow, I. E., Batianoff, G. N., & Collins, R. N. (2006). Manganese accumulation in the leaf mesophyll of four tree species: a PIXE/EDAX localization study. New Phytologist, 171(4), 751–758.

Hauck, M., Paul, A., Mulack, C., Fritz, E., Runge, M., 2002. Effects of manganese on the viability of vegetative diasporas of the epiphytic lichen Hypogymnia physodes. Environmental and Experimental Botany, 47(2), 127-142.

Hoagland, D. R. & Arnon, D. I. (1950). The water-culture method for growing plants without soil. Circular. University of California Agricultural Experiment Station, 347.

IGAM - Instituto Mineiro de Gestão das Águas. (2015). Monitoramento da qualidade das águas superficiais do Rio Doce no estado de Minas Gerais. Relatório técnico.

Kitao, M., Lei, T. T., Nakamura, T., Koike, T. (2001). Manganese toxicity as indicated by visible foliar symptoms of Japanese white birch (Betula platyphylla var. japonica). Environmental Pollution, 111(1), 89-94.

Larcher, W. (2000). Ecofisiologia Vegetal. São Paulo: Pedagógica Universitária Ltda.

Lichtenthaler, H. K. (1987). Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods in Enzimology, 148, 350-382.

Lizieri C., Kuki K.N. & Aguiar R. (2012). The morphophysiological responses of free-floating aquatic macrophytes to a supra-optimal supply of manganese. Water Air Soil Pollution, 223(5), 2807-20.

Lizieri, C., Aguiar, R. & Kuki, K.N., 2011.Manganese accumulation and its effects on three tropical aquatic macrophytes: Azolla caroliniana, Salvinia minima and Spirodela polyrhiza. Rodriguésia, 62(4), 909-917.

Lopes, A. E & Duarte, N. F. (2017). O tratamento de efluentes líquidos através de sistemas utilizando agentes de fitorremediação: uma revisão sistemática. Revista Gestão e Sustentabilidade Ambiental, 6, 432-441.

Manahan, S. E. (1999). Environmental Chemistry. (7a ed.), Lewis Publishers, Boca Raton, USA.

Marques, V. S. (1997). Efeitos de zinco e cádmio em arroz (Oryza sativa L.) cultivado em solução nutritiva e em solo tratado com lodo de esgoto enriquecido. 146 f. Dissertação Mestrado em Agronomia e Ciência do Solo. Universidade Federal Rural do Rio de Janeiro, Itaguaí. Rio de Janeiro.

Memon, A. R, & Yatazawa, M. (1980). Distribution of manganese in leaf tissues of manganese accumulator: Acanthopanax sciadophylliodes as revealed by electronprobe X-ray microanalyzer. Journal of Plant Nutriton, 2(4): 457-476.

Mganga, N. D. (2014). The Potential of Bioaccumulation and Translocation of Heavy Metals in Plant Species Growing around the Tailing Dam in Tanzania. International Journal of Science and Technology, 3(10), 690-697.

Miretzky, P., Saralegui, A. & Cirelli, A. F. (2004). Aquatic macrophytes potential for the simultaneous removal of heavy metals (Buenos Aires, Argentina). Chemosphere, 57(8), 997-1005.

Mishra, V. K., Upadhyaya, A. R., Pandey, S. K. & Tripathi, B. D. (2008). Heavy metal pollution induced due to coal mining effluent on surrounding aquatic ecosystem and its management through naturally occurring aquatic macrophytes. Bioresource Technology, 99(5), 930-936.

Mota, F. A. C, & Santana, G. P. (2016). Plantas e metais potencialmente tóxicos – estudos de fitorremediação no Brasil. Scientia Amazonia, 5, 22-36.

Nyer, E. (1998). Groundwater and soil remediation - practical methods and strategies. Ann Arbor Press, Chelsea, Michigan.

Noraho, N. & Gaur J. P. (1996). Cadmium adsorption and intracellular uptake by two macrophytes, Azolla pinnata and Spirodela polyrhiza. Archiv fuer Hydrobiologie, 136, 135- 144.

Obinnaa, I. B. & Ebere, E. C. (2019). A Review: Water pollution by heavy metal and organic pollutants: Brief review of sources, effects and progress on remediation with aquatic plants. Analytical Methods in Environmental Chemistry Journal, 2(3), 5-38.

Oliveira, J. A., Cambraia, J., Cano, M. A. O. & Jordão, C. P. (2001). Absorção e acúmulo de cádmio e seus efeitos sobre o crescimento relativo de plantas de aguapé e de salvínia. Revista Brasileira de Fisiologia Vegetal 13(3), 329-341.

Pell, E. J., Eckart, N. & Glick, R. E. (1994). Biochemical and molecular basis for impairment of photosynthesis potential. Photosynthesis Research, 39, 453-462.

Pilon-Smits, E. (2005). Phytoremediation. Annual Review of Plant Biology, 56, 15-39.

Rai, U. N, Sinha S., Ripathi, R. D., & Chandra, P. (1995). Wastewater treatability potential of some aquatic macrophytes: Removal of heavy metals. Ecological Engineering, 5(1), 5-12.

Raskin, I., & Ensley, B. D. (2000). Phytoremediation of toxic metals: using plants to clean up the environment. John Wiley & Sons, Inc.

Rebouças, A. C. (1999). Águas Doces no Brasil: capital ecológico, uso e conservação. Org., Rebouças, A., Braga B. & Tundizi, J.G. São Paulo: Escrituras Editora.

Russel, J. B. (1994). Química geral. (2a ed.), Pearson Makron Books.

Schröder, P. Navarro-Aviñó, J. Azaizeh, H. et al. (2007). Using phytoremediation technologies to upgrade waste water treatment in Europe. Environmental Science and Pollution Research, 14, 490-497.

Silva, D. F. Da; Furtado, L. G.; Beltrão, N. E. S.; & Pontes, A. N. (2020). Pressões ambientais sobre serviços ecossistêmicos hídricos em um manancial em Belém, Pará, Brasil. Research, Society and Development, 9(8), p. e502985981. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/5981. Acesso em: 8 mar. 2021.

Singh, U., Singh, S., Tiwari, K. R., & Pandey, R. S. (2018). Water Pollution due to Discharge of Industrial Effluents with special reference to Uttar Pradesh, India – A review. International Archive of Applied Sciences and Technology, 9(4), 111-121.

Sankhla, M. S., Kumari, M., Nandan, M.; Kumar, R., & Agrawal, P. (2016). Heavy Metals Contamination in Water and their Hazardous Effect on Human Health - A Review. International Journal of Current Microbiology and Applied Sciences, 5(10), 759-766.

Sinha, S., Rai, U.N. & Chandra, P. (1994). Accumulation and toxicity of iron manganese in Spirodela polrrhiza (L.) Schleiden. Bulletin of Environmental Contamination and Toxicology, 53, 610-617.

Souza, A. M, Salviano, A. M., Melo, J. F. B., Felix, W. P., Belém, C. S. & Ramos, P. N. (2016). Seasonal study of concentration of heavy metals in waters from lower São Francisco River basin, Brazil. Brazilian Journal of Biology, 76(4), 967-974.

Souza, A. K. R., Morassuti, C. Y & Deus, W. B. (2018). Poluição do ambiente por metais pesados e utilização de vegetais como bioindicadores. Acta Biomedica Brasiliensia, 9(3), 95-106.

Solti, A., Gáspár, L., Mézáros, I., Szigeti, Z., Lévai, L. & Sárvári, E. (2008). Impact of Iron Supply on the Kinetics of Recovery of Photosynthesis in Cd-stressed Poplar (Populus glauca). Annals of Botany, 102(5), 771-782.

Tangahu, B. V., Abdullah, S. R. S., Basri, H., Idris, M., Anuar, N. & Mukhlisin, M. (2011). A Review on Heavy Metals (As, Pb, and Hg) Uptake by Plants through Phytoremediation. International Journal of Chemical Engineering, 2011, 31 pages.

Targa, M & Batista, GT. (2015). Benefits and legacy of the water crisis in Brazil. Revista Ambiente e Água, 10(2), 234-239.

Thornton, I. (1995). Metals in the global environment. Int. Council on Metal and the Environment.

Teixeira. I. R., Borém, A., Andrade, M. J.B., Giúdice, M. P.D. & Cecon, R. P. (2004). Teores de clorofila em plantas de feijoeiros influenciadas pela adubação com manganês e zinco Ciências Agrárias Maringá, 26(2). 147-152, 2004.

Tripathi, R. D. & Chandra. P. (1991). Chromium uptake by Spirodela polyrrhiza (L.) Schleiden in relation to metal chelators and pH. Bulletin of Environment Contamination Toxicology. 47 (5), 767-769.

Tundisi, J. G. & Matsumura-Tundisi, T. (2020). A Água / José Galizia Tundisi, Takako Matsumura-Tundisi. Ed. Scienza.

UNPD - United Nations Development Programme. Beyond scarcity: power, poverty and the global water crisis. 421p.

USEPA - United States Environmental Protection Agency. (2000). Introduction to Phytoremediation.

Wang, Q. & Yang, Z. (2016). Industrial water pollution, water environment treatment, and health risks in China. Environmental Pollution, 218, 358-365.

Yabanli, M., Yozukmaz, A. & Sel, F. (2014). Heavy Metal Accumulation In the Leaves, Stem and Root of the Invasive Submerged Macrophyte Myriophyllum spicatum L. (Haloragaceae): An Example of Kadın Creek (Mugla, Turkey). Brazilian Archives of Biology and Technology, 57(3), 434-440.

Yan, A., Wang, Y., Tan, S. N., Yusof, M. L. M., Ghosh, S. & Chen, Z. (2020). Phytoremediation: A Promising Approach for Revegetation of Heavy Metal-Polluted Land. Frontiers in Plant Science, 11, 359.

Downloads

Publicado

16/03/2021

Como Citar

SILVA, D. M. .; LIZIERI, C.; OLIVEIRA JÚNIOR, E. S. . Plantas aquáticas em ecotecnologias: perspectivas para fitorremediação de ferro e manganês. Research, Society and Development, [S. l.], v. 10, n. 3, p. e29510313320, 2021. DOI: 10.33448/rsd-v10i3.13320. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/13320. Acesso em: 23 nov. 2024.

Edição

Seção

Ciências Agrárias e Biológicas