Propriedades mecânicas dos compósitos com tecnologia bioativa Giomer: uma revisão de literatura

Autores

DOI:

https://doi.org/10.33448/rsd-v10i3.13413

Palavras-chave:

Resinas compostas; Materiais biocompatíveis; Fenômenos mecânicos.

Resumo

The objective is to evaluate the mechanical properties of the material bioactive restorative Giomer through an integrative literature review. The search was carried out in the months of July and August 2020 in the databases Pubmed and BVL, using two groups of descriptors connected by the boolean “AND” that allowed the inclusion of 20 articles in this review. The results show that the Giomer material showed laboratory flexural behavior superior to that compomer and glass ionomer cement, in addition to not reducing its flexural modulus when submerged in some substances. The microhardness of the Giomer suffered a reduction when in contact with acid solutions, such as refrigerant at based on Cola, coffee, citric acid and ethanol, in addition to undergoing changes according to photopolymerization protocol. It was possible to conclude that several factors can positively and negatively interfere with the mechanical properties of the Giomer composite when evaluated in vitro, as observed for acidic solutions and carbamide peroxide.

Referências

Bagheri, R., Tyas, M. J., Burrow, M. F. (2007). Subsurface degradation of resin-based composites. Dent Mater, 23, 944-951. https://doi.org/10.1016/j.dental.2006.06.035

Bayrak, S., Tunc, E. S., Aksoy, A., Ertas, E., Guvenc, D., Ozer, S. (2010). Fluoride release and recharge from different materials used as fissure sealants. Eur J Dent, 4, 245-250.

Boaro, L. C., Gonçalves, F., Guimarães, T. C., Ferracane, J. L., Pfeifer, C. S., Braga, R. R. (2013). Sorption, solubility, shrinkage and mechanical properties of “low-shrinkage” commercial resin composites. Dent Mater, 29, 398-404. https://doi.org/10.1016/j.dental.2013.01.006

Briso, A. L., Tuñas, I.T., de Almeida, L. C., Rahal, V., Ambrosano, G. M. (2010). Effects of five carbamide peroxide bleaching gels on composite resin microhardness. Acta Odontol Latinoam, 23, 27–31.

Campos, I., Briso, A. L., Pimenta, L. A., Ambrosano, G. (2003). Effects of bleaching with carbamide peroxide gels on microhardness of restoration materials. J Esthet Restor Dent, 15, 175–82. https://doi.org/10.1111/j.1708-8240.2003.tb00187.x

Choi, J. W., Lee, M. J., Oh, S. H., Kim, K. M. (2019). Changes in the physical properties and color stability of aesthetic restorative materials caused by various beverages. Dent Mater J, 38(1), 33-40.

Condon, J. R., Ferracane, J. (1997). In vitro wear of composite with varied cure, filler level, and filler treatment. J Dent Res, 76, 1405-1411. https://doi.org/10.1177%2F00220345970760071101

Coombes, J. S. (2005) Sports drinks and dental erosion. Am J Dent, 18, 101-104.

EL-Sharkawy, F. M., Zaghloul, N. M., Ell-kappaney, A. M. (2012). Effect of water absorption on color stability of different resin based restorative materials in vitro study. Int J Compos Mater, 2, 7-10.

Erdemir, U., Yildiz, E., Eren, M. M., Ozel, S. (2012). Surface hardness of different restorative materials after long-term immersion in sports and energy drinks. Dent Mater J, 31, 729-736. https://doi.org/10.4012/dmj.2012-054

Ergucu, Z., Turkun, L. S. (2007). Clinical performance of novel resin composites in posterior teeth: 18-month results. J Adhes Dent, 9, 209-216.

Eweis, A. H., Yap, A. U., Yahya, N. A. (2018). Impact of dietary solvents on flexural properties of bulk-fill composites. Saudi Dent J, 30, 232-239. https://doi.org/10.1016/j.sdentj.2018.04.002

Eweis, A. H., Yap, A. U., Yahya, N. A. (2020). Comparison of Flexural Properties of Bulk-fill Restorative/Flowable Composites and Their Conventional Counterparts. Oper Dent, 45, 41-51. https://doi.org/10.2341/18-133-L

Ferracane, J. L. (2011). Resin composite--state of the art. Dent Mater, 27, 29-38. https://doi.org/10.1016/j.dental.2010.10.020

Garoushi, S., Vallittu, P. K., Lassila, L. (2018). Characterization of fluoride releasing restorative dental materials. Dent Mater J, 37, 293-300.

Gonulol, N., Ozer, S., Tunc, E. S. (2016). Effect of a third-generation LED LCU on microhardness of tooth-colored restorative materials. Int J Paediatr Dent, 26, 376-382. https://doi.org/10.1111/ipd.12213

Heintze, S. D., Ilie, N., Hickel, R., Reis, A., Loguercio, A., Rousson, V. (2017). Laboratory mechanical parameters of composite resins and their relation to fractures and wear in clinical trials —A systematic review. Dent Mater, 33, 101-114. https://doi.org/10.1016/j.dental.2016.11.013

Ilie, N., Fleming, G. J. (2015). In vitro comparison of polymerisation kinetics and the micro-mechanical properties of low and high viscosity giomers and RBC materials. J Dent, 43, 814-822. https://doi.org/10.1016/j.jdent.2015.04.009

Ilie, N., Stawarczyk, B. (2016). Evaluation of modern bioactive restoratives for bulk-fill placement. J Dent, 49, 46-53. https://doi.org/10.1016/j.jdent.2016.04.001

Kaya, M. S., Bakkal, M., Durmus, A., Durmus, Z. (2018). Structural and mechanical properties of a giomer-based bulk fill restorative in different curing conditions. J Appl Oral Sci, 26, e20160662. https://doi.org/10.1590/1678-7757-2016-0662

Kimyai, S., Bahari, M., Naser-Alavi, F., Behboodi, S. (2017). Effect of two different tooth bleaching techniques on microhardness of giomer. J Clin Exp Dent, 9, 249-253. http://dx.doi.org/10.4317/jced.53290

Kooi, T. J., Tan, Q. Z., Yap, A. U., Guo, W., Tay, K. J., Soh, M. S. (2012). Effects of food-simulating liquids on surface properties of giomer restoratives. Oper Dent, 37, 665-671. https://doi.org/10.2341/11-419-L

Lien, W., Vandewalle, K. S. (2010). Physical properties of a new silorane-based restorative system. Dent Mater, 26, 337-344. https://doi.org/10.1016/j.dental.2009.12.004

McCabe, J. F., Yan, Z., Al Naimi, O. T., Mahmoud, G., Rolland, S. L. (2011). Smart materials in dentistry. Aust Dent J, 56 Suppl 1, 3-10. https://doi.org/10.1111/j.1834-7819.2010.01291.x

Michaud, P. L., Price, R. B., Labrie, D., Rueggeberg, F. A., Sullivan, B. (2014). Localised irradiance distribution found in dental light curing units. J Dent, 42, 129-139. https://doi.org/10.1016/j.jdent.2013.11.014

Naoum, S., Ellakwa, A., Martin, F., Swain, M. (2011). Fluoride release, recharge and mechanical property stability of various fluoride-containing resin composites. Oper Dent, 36, 422-432. https://doi.org/10.2341/10-414-L

Ozak, S. T., Ozkan, P. (2013). Nanotechnology and dentistry. Eur J Dent, 7(1), 7.

Parasher, A., Ginjupalli, K., Somayaji, K., Kabbinale, P. (2020). Comparative evaluation of the depth of cure and surface roughness of bulk-fill composites: An in vitro study. Dent Med Probl, 57, 39-44. https://doi.org/10.17219/dmp/113003

Pereira A.S., Shitsuka, D. M., Parreira, F. J., Shitsuka, R. (2018). Metodologia da pesquisa científica. [eBook]. Santa Maria. Ed. UAB / NTE / UFSM.

Roberts, T., Miyai, K., Ikemura, K., Fuchigami, K., Kitamura, T. (1999). Fluoride ion sustained release preformed glass ionomer filler and dental compositions containing the same. United States Patent, 5, 883-153.

Santos, C., Clarke, R. L., Braden, M., Guitian, F., Davy, K. W. (2002). Water absorption characteristics of dental composites incorporating hydroxyapatite filler. Biomaterials, 23, 1897-1904. https://doi.org/10.1016/S0142-9612(01)00331-3

Silva, E. M., Poskus, L. T., Guimaraes, J. G. (2008). Influence of light-polymerization modes on the degree of conversion and mechanical properties of resin composites: a com-parative analysis between a hybrid and a nanofilled composite. Oper Dent, 33, 287-293. https://doi.org/10.2341/07-81

Silva, T. M., Dantas, D. C. B., Franco, T. T., Franco, L. T., Huhtala, M. F. R. L. (2019). Surface degradation of composite resins under staining and brushing challenges. J Dent Sci, 14, 87-92. https://doi.org/10.1016/j.jds.2018.11.005

Soares, P. V., Peres, T. S., Wobido, A. R., Machado, A. C. (2019). Composite resin in the last 10 years - Literature Review. Part 1: Chemical composition. J Clin Dent Res, 16, 45-56.

Spajic, J., Par, M., Milat, O., Demoli, N., Bjelovucic, R., Prskalo, K. (2019). Effects of Curing Modes on the Microhardness of Resin-modified Glass Ionomer Cements. Acta Stomatol Croat, 53, 37-46. https://doi.org/10.15644/asc53/1/4

Tanthanuch, S., Kukiattrakoon, B., Siriporananon, C., Ornprasert, N., Mettasitthikorn, W., Likhitpreeda, S., et al. (2014). The effect of different beverages on surface hardness of nanohybrid resin composite and giomer. J Conserv Dent, 17, 261-265. https://www.jcd.org.in/text.asp?2014/17/3/261/131791

Toledano, M., Osorio, R., Osorio, E., Prati, C., Garcia Godoy, F. (2003). Sorption and solubility of resin based restorative dental materials. J Dent, 31, 43-50. https://doi.org/10.1016/S0300-5712(02)00083-0

Tsujimoto, A., Barkmeier, W. W., Takamizawa, T., Latta, M. A., Miyazaki, M. (2017). Depth of cure, flexural properties and volumetric shrinkage of low and high viscosity bulk-fill giomers and resin composites. Dent Mater J, 36, 205-213. https://doi.org/10.4012/dmj.2016-131

Ugurlu, M., Ozkan, E. E., Ozseven, A. (2020). The effect of ionizing radiation on properties of fluoride-releasing restorative materials. Braz Oral Res, 34, e005. https://doi.org/10.1590/1807-3107bor-2020.vol34.0005

van DÊken, J. W. (2000). Direct resin composite inlays/onlays: an 11 year follow-up. J Dent, 28, 299-306. https://doi.org/10.1016/S0300-5712(00)00010-5

Van Nieuwenhuysen, J. P., D’Hoore, W., Carvalho, J., Qvist, V. (2003). Long-term evaluation of extensive restorations in permanent teeth. J Dent, 31, 395-405. https://doi.org/10.1016/S0300-5712(03)00084-8

Yap, A. U., Eweis, A. H., Yahya, N. A. (2018). Dynamic and Static Flexural Appraisal of Resin-based Composites: Comparison of the ISO and Mini-flexural Tests. Oper Dent, 43, 223-231. https://doi.org/10.2341/17-224-L

Yu, P., Yap, A. U. J., Wang, X. Y. (2017). Degree of Convention and Polymerization Shrinkage of bulk-fill resin -based composite. Oper Dent, 42, 82-89.

Zhou, X., Wang, S., Peng, X., Hu, Y., Ren, B., Li, M., et al. (2018). Effects of water and microbial-based aging on the performance of three dental restorative materials. J Mech Behav Biomed Mater, 80, 42-50. https://doi.org/10.1016/j.jmbbm.2018.01.023

Downloads

Publicado

21/03/2021

Como Citar

SILVA, A. R. J. da; FEITOSA, V. G.; SOUZA, A. N. de .; MUNIZ, R. P. D. .; ORNELLAS, M. C. A. S. .; SILVA, E. P. L. .; BRAZ, R. Propriedades mecânicas dos compósitos com tecnologia bioativa Giomer: uma revisão de literatura. Research, Society and Development, [S. l.], v. 10, n. 3, p. e43310313413, 2021. DOI: 10.33448/rsd-v10i3.13413. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/13413. Acesso em: 30 jun. 2024.

Edição

Seção

Ciências da Saúde