Comportamento eletroquímico de ligas de aço inoxidável utilizadas para aplicações médicas e dentárias em função da exposição a 0,9% NaCl e esterilização
DOI:
https://doi.org/10.33448/rsd-v10i5.13544Palavras-chave:
Inox; Ligas; Corrosão; Cloreto de sódio; Esterilização.Resumo
Este estudo avaliou o efeito de procedimentos de desinfecção e exposição a ciclos de solução de NaCl a 0,9% durante a esterilização, nas propriedades eletroquímicas, físicas e químicas de diferentes ligas de aço inoxidável utilizadas na área biomédica. Os discos das ligas F899 XM16, F899 303 e F899 420B foram limpos com detergente enzimático seguido de 20 ciclos de esterilização em autoclave. Testes eletroquímicos foram realizados incluindo potencial de circuito aberto, espectroscopia de impedância eletroquímica e testes de polarização potenciodinâmica em NaCl a 0,9% (n = 5). A caracterização da superfície foi realizada por meio de microscopia eletrônica de varredura (MEV), espectroscopia de energia dispersiva e rugosidade e microdureza de superfície antes e após o teste eletroquímico. Os dados quantitativos foram analisados com nível de significância de 5%. A densidade de corrente de corrosão e o potencial de corrosão das ligas não apresentaram diferenças estatísticas. Os valores de capacitância das três camadas de óxido, resistência de polarização e impedância de Warburg foram semelhantes entre as ligas. Considerando a topografia, a rugosidade superficial aumentou para todas as ligas no período pós-corrosão. As ligas de aço inoxidável analisadas foram afetadas negativamente no comportamento eletroquímico, cinética de corrosão e caracterização da superfície após a solução de NaCl a 0,9% e os ciclos de esterilização em autoclave, confirmando a necessidade de trocas regulares de instrumentos cirúrgicos e brocas usadas em implantologia médica e dentária.
Referências
Agrawal, H., & Sharma, P., Tiwari, P., Taiwade, R. V., Dayal, R. K. (2015). Evaluation of Self-Healing Behaviour of AISI 304 Stainless Steel. Transactions of the Indian Institute of Metals, 68(4):501–511. 10.1007/s12666-014-0467-7.
Allsobrook, O. F., Leichter, J., Holborrow, D., & Swain, M. (2011). Descriptive study of the longevity of dental implant surgery drills. Clinical implant dentistry and related research, 13(3), 244–254. 10.1111/j.1708-8208.2009.00205.x
Al Jabbari, Y., Fournelle, R., Ziebert, G., Toth, J., & Iacopino, A. (2008). Mechanical behavior and failure analysis of prosthetic retaining screws after long-term use in vivo. Part 2: Metallurgical and microhardness analysis. Journal of prosthodontics: official journal of the American College of Prosthodontists, 17(3), 181–191. 10.1111/j.1532-849X.2007.00271.x
Barão, V. A., & Mathew, M. T., Assunção, W. G, Yuan, J. C., Wimmer, M. A., Sukotjo, C. (2011). The role of lipopolysaccharide on the electrochemical behavior of titanium. Journal of Dental Research, 90(5), 613-8. 10.1177/0022034510396880.
Barão, V. A., Mathew, M. T., Assunção, W. G., Yuan, J. C., Wimmer, M. A., & Sukotjo, C. (2012). Stability of cp-Ti and Ti-6Al-4V alloy for dental implants as a function of saliva pH - an electrochemical study. Clinical oral implants research, 23(9), 1055–1062. 10.1111/j.1600-0501.2011.02265.x
Batista Mendes, G. C., Padovan, L. E., Ribeiro-Júnior, P. D., Sartori, E. M., Valgas, L., & Claudino, M. (2014). Influence of implant drill materials on wear, deformation, and roughness after repeated drilling and sterilization. Implant dentistry, 23(2), 188–194. 10.1097/ID.0000000000000028
Beline, T., Garcia, C. S., Ogawa, E. S., Marques, I., Matos, A. O., Sukotjo, C., Mathew, M. T., Mesquita, M. F., Consani, R. X., & Barão, V. (2016). Surface treatment influences electrochemical stability of cpTi exposed to mouthwashes. Materials science & engineering. C, Materials for biological applications, 59, 1079–1088. 10.1016/j.msec.2015.11.045
Beline, T., Marques, I., Matos, A. O., Ogawa, E. S., Ricomini-Filho, A. P., Rangel, E. C., da Cruz, N. C., Sukotjo, C., Mathew, M. T., Landers, R., Consani, R. L., Mesquita, M. F., & Barão, V. A. (2016). Production of a biofunctional titanium surface using plasma electrolytic oxidation and glow-discharge plasma for biomedical applications. Biointerphases, 11(1), 011013. 10.1116/1.4944061
Bonaccorso, A., Tripi, T. R., Rondelli, G., Condorelli, G. G., Cantatore, G., & Schäfer, E. (2008). Pitting corrosion resistance of nickel-titanium rotary instruments with different surface treatments in seventeen percent ethylenediaminetetraacetic Acid and sodium chloride solutions. Journal of endodontics, 34(2), 208–211. doi.org/10.1016/j.joen.2007.11.012
Bullon, B., Bueno, E. F., Herrero, M., Fernandez-Palacin, A., Rios, J. V., Bullon, P., & Gil, F. J. (2015). Effect of irrigation and stainless steel drills on dental implant bed heat generation. Journal of materials science. Materials in medicine, 26(2), 75. 10.1007/s10856-015-5412-8
Ciuccio, R.L., & Garbulha, D., Lopes, F., & Oliveira., M. D. (2011). Children with cochlear implants: communication skills and quality of life. Innovations implant journal: biomaterials and esthetics, 4. 10.1590/S1808-86942012000100003.
Cui, S., & Yin, X., Yu, Q., Liu, Y., Wang, D., & Zhou. F. (2015). Polypyrrole nanowire/TiO2 nanotube nanocomposites as photoanodes for photocathodic protection of Ti substrate and 304 stainless steel under visible light. Corrosion Science, 98:471-477. 10.1016/j.corsci.2015.05.059.
Dalmau, A., & Rmili, W., Richard, C., & Igual–Muñoz. A. (2016). Tribocorrosion behavior of new martensitic stainless steels in sodium chloride solution. Wear, 368–369:146-155. 10.1016/j.wear.2016.09.002.
Dadfar, M., & Salehi, M., Golozar, M. A., & Trasatti, S. (2016). Surface modification of 304 stainless steels to improve corrosion behavior and interfacial contact resistance of bipolar plates. International Journal of Hydrogen Energy, 41:21375-21384.
Fais, L. M., & Pinelli, L. A., Adabo, G. L., et al. (2009). Influence of microwave sterilization on the cutting capacity of carbide burs. Journal of Applied Oral Science, 17(6):584-589. 10.1590/s1678-77572009000600009.
Faverani, L. P., Barao, V. A., Pires, M. F., Yuan, J. C., Sukotjo, C., Mathew, M. T., & Assunção, W. G. (2014). Corrosion kinetics and topography analysis of Ti-6Al-4V alloy subjected to different mouthwash solutions. Materials science & engineering. C, Materials for biological applications, 43, 1–10. 10.1016/j.msec.2014.06.033
Hallab, N., Jacobs, J. J., & Black, J. (2000). Hypersensitivity to metallic biomaterials: a review of leukocyte migration inhibition assays. Biomaterials, 21(13):1301-14. 10.1016/s0142-9612(99)00235-5.
Hedberg, Y. S., & Odnevall Wallinder, I. (2015). Metal release from stainless steel in biological environments: A review. Biointerphases, 11(1), 018901. 10.1116/1.4934628
Hedberg, Y., & Wang, X., Hedberg, J., et al. (2013). Surface-protein interactions on different stainless steel grades: effects of protein adsorption, surface changes and metal release. Journal of Materials science: Materials in Medicine, 24(4):1015-1033. 10.1007/s10856-013-4859-8.
Isac, J., Chandrashekar, B. S., Mahendra, S., Mahesh, C. M., Shetty, B. M., & Arun, A. V. (2015). Effects of clinical use and sterilization on surface topography and surface roughness of three commonly used types of orthodontic archwires. Indian Journal of Dental Research. 26(4):378-383.
Jacobs, J. J., Skipor, A. K., Patterson, L. M., Hallab, N. J., Paprosky, W. G., Black, J., & Galante, J. O. (1998). Metal release in patients who have had a primary total hip arthroplasty. A prospective, controlled, longitudinal study. The Journal of bone and joint surgery. American volume, 80(10), 1447–1458. 10.2106/00004623-199810000-00006
Jin-long, L.V., & Hong-yun., L. (2012). Influence of tensile pre-strain and sensitization on passive films in AISI 304 austenitic stainless steel. Materials Chemistry and Physics, 135:973-978. 10.1016/j.matchemphys.2012.05.086.
Jorge, J. R., & Barao, V. A., Delben, J. A., Assuncao, W. G. (2013). The role of implant/abutment system on torque maintenance of retention screws and vertical misfit of implant-supported crowns before and after mechanical cycling. The International Journal of Oral & Maxillofacial Implants, 28(2):415-422. 10.11607/jomi.2727.
Kocijan, A., & Merl, D. K., & Jenko, M. (2011). Effect of Mo on interaction between α/γ phases of duplex stainless steel. Corrosion Science, 267:255-268. 10.1016/j.electacta.2018.02.082.
Luo, H., & Su, H., Dong, C., Li. X. (2011). Characterization of passive film on 2205 duplex stainless steel in sodium thiosulphate solution. Applied Surface Science, 258(15):631-639. 10.1016/j.apsusc.2011.06.077.
Mathew, M. T., Barão, V. A., Yuan, J. C., Assunção, W. G., Sukotjo, C., & Wimmer, M. A. (2012). What is the role of lipopolysaccharide on the tribocorrosive behavior of titanium? Journal of the mechanical behavior of biomedical materials, 8, 71–85. https://doi.org/10.1016/j.jmbbm.2011.11.004
McGuire, M. F. (2008). Stainless Steels for Design Engineers, United States of American.
Mishra, S. K., & Chowdhary, R. (2014). Heat generated by dental implant drills during osteotomy-a review: heat generated by dental implant drills. Journal of Indian Prosthodontic Society, 14(2), 131–143. 10.1007/s13191-014-0350-6.
Newbury, D. E., & Ritchie, N. W., (2013). Is Scanning Electron Microscopy/Energy Dispersive X‐ray Spectrometry (SEM/EDS) Quantitative? Scanning, 35:141-168. 10.1002/sca.21041.
Oliveira, M. S., Borges, A. H., Mattos, F. Z., Semenoff, T. A., Segundo, A. S., Tonetto, M. R., Bandeca, M. C., & Porto, A. N. (2014). Evaluation of different methods for removing oral biofilm in patients admitted to the intensive care unit. Journal of international oral health: JIOH, 6(3), 61–64.
Ribeiro, D. V., & Abrantes, J. C. C. (2016). Application of electrochemical impedance spectroscopy (EIS) to monitor the corrosion of reinforced concrete: A new approach. Construction and Building Materials, 111:98-104. 10.1016/j.conbuildmat.2016.02.047.
Rutala, W. A., & Weber, D. J. (2016). Disinfection and Sterilization in Health Care Facilities: An Overview and Current Issues. Infectious disease clinics of North America, 30(3), 609–637. https://doi.org/10.1016/j.idc.2016.04.00.
Roselino Ribeiro, A. L., Noriega, J. R., Dametto, F. R., & Vaz, L. G. (2007). Compressive fatigue in titanium dental implants submitted to fluoride ions action. Journal of applied oral science: revista FOB, 15(4), 299–304. https://doi.org/10.1590/s1678-77572007000400011.
Sedriks, A.J. (1996). Corrosion of Stainless Steel, (2nd ed.), Wiley-Interscience.
Skale, S., & Doleček, V., Slemnik. M. (2007). Substitution of the constant phase element by Warburg impedance for protective coatings. Corrosion Science, 49(3):1045-1055. 10.1016/j.corsci.2006.06.027.
Shemtov-Yona, K., & Rittel, D. (2016). Fatigue failure of dental implants in simulated intraoral media. Journal of the mechanical behavior of biomedical materials, 62, 636–644. https://doi.org/10.1016/j.jmbbm.2016.05.028.
Sun, R.-j., & Sun, Q.-q., Xie, Y.-h., Dong, P.-x., Chen, Q.-y., & Chen, K.-h. (2016). Enhancing corrosion resistance of 7150 Al alloy using novel three-step aging process. Transactions of Nonferrous Metals Society of China, 26(5):1201-1210. 10.1016/S1003-6326(16)64192-4.
Tsaousis, K. T., & Werner, L., Perez, J. P., et al. (2016). Comparison of different types of phacoemulsification tips. I. Quantitative analysis of elemental composition and tip surface microroughness. Journal of Cataract and Refractive Surgery, 42(9):1345-1352. 10.1016/j.jcrs.2016.02.052.
Valois, C. R., & Silva, L. P., & Azevedo, R. B. (2008). Multiple autoclave cycles affect the surface of rotary nickel-titanium files: an atomic force microscopy study. Journal of Endodontics, 34(7):859-62. 10.1016/j.joen.2008.02.028.
Virtanen, S., Milosev, I., Gomez-Barrena, E., Trebse, R., Salo, J., & Konttinen, Y. T. (2008). Special modes of corrosion under physiological and simulated physiological conditions. Acta biomaterialia, 4(3), 468–476. https://doi.org/10.1016/j.actbio.2007.12.003.
Wilson, A. J., & Nayak, S. (2016). Disinfection, sterilization and disposables. Anaesthesia & Intensive Care Medicine, 17, 475-479. 10.1016/j.mpaic.2016.07.002.
Xin, X. Z., & Chen, J., Xiang, N., Gong, Y., & Wei, B. (2014). Surface characteristics and corrosion properties of selective laser melted Co-Cr dental alloy after porcelain firing. Dental Materials, 30(3):263-70. 10.1016/j.dental.2013.11.013.
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2021 Cecília Alves de Sousa; Carolina Ferrairo Danieletto-Zanna; Thamara Beline; Gustavo Zanna Ferreira; Leonardo Perez Faverani; Valentim Adelino Ricardo Barão; Wirley Gonçalves Assunção
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Autores que publicam nesta revista concordam com os seguintes termos:
1) Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
2) Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
3) Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado.