Use of arbuscular mycorrhizal fungi and phosphorus for increase in the concentration of compounds with antioxidant activity in Libidibia ferrea

Authors

DOI:

https://doi.org/10.33448/rsd-v10i4.13827

Keywords:

AMF; Leguminosae; Phosphate nutrition; Pau-ferro.

Abstract

The increase of the concentration of secondary compounds in medicinal plants can be influenced by the association with arbuscular mycorrhizal fungi (AMF). Pharmacological studies have shown that secondary compounds, found ing Libidibia ferrea (Mart. ex Tul.) L. P. Queiroz, confer phytotherapeutic potential to the species due to antidiabetic, antibiotic and anticancer activity. Therefore, the aim of this work was to verify if the presence of AMF associated or not with phosphate fertilization has an effect on the concentration of foliar phenolic compounds with antioxidant activity in L. ferrea seedlings. The seedlings were transferred to pots with 1.2 kg of soil with phosphate fertilization (P2O5) or not. In the roots was deposited soil-inoculum, containing 300 spores {100 spores of each AMF species: Claroideoglomus etunicatum, Gigaspora albida and Acaulospora longula Acaulospora longula. The plants were maintained in greenhouse for seven months. AMF favored an increase in shoot dry matter production, accumulation of flavonoids and greater total antioxidant activity, dispensing fertilization of the soil. The mycorrhizal inoculation associated with phosphate fertilization maximized the biosynthesis of total chlorophyll and soluble carbohydrates. AMF inoculation presents as a possible biotechnological alternative to increase antioxidant activity and foliar flavonoid production in L. ferrea seedlings, avoiding expenses with agricultural inputs, such as phosphate fertilization, making phytomass more attractive for the production of phytotherapics.

References

Araújo, T. A. S, Alencar, N. L., Amorim, E. L. C., & Albuquerque, U. P. (2008). A new approach to study medicinal plants with tannins and flavonoids contents from the local knowledge. Journal of Ethnopharmacology, 120, 72-80.

Assistat 7.6 beta (2013). Registro INPI 0004051-2. http://www.assistat.com.

Baslam, M., & Goicoechea, N. (2012). Water déficit impoved the capacity os arbuscular mycorrhyzal fungi (AMF) for inducing the accumulation of antioxidante compounds in lettuce leaves. Mycorrhiza, 22, 347-359.

Biruel, R. P., Aguiar, I. B., & Paula, R. C. (2007). Germinação de sementes de pau-ferro submetidas a diferentes condições de armazenamento, escarificação química, temperatura e luz. Revista Brasileira de Sementes, 29, 134-141.

Bradford, M. M. (1976). A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248-254.

Brito, H. O., Noronha, E. P., França, L. M., Brito, L. M. O., & Prado, A. S. (2008). Análise da composição fitoquímica do extrato etanólico das folhas de Annona squamosa (ATA). Revista Brasileira de Farmácia, 89, 180-184.

Cavalcante, U. M. T., Maia, L. C., Costa, C. M. C., Cavalcante, A. T., & Santos, V. F. (2002). Efeito de fungos micorrízicos arbusculares, da adubação fosfatada e da esterilização do solo no crescimento de mudas de maracujazeiro amarelo. Revista Brasileira de Ciência do Solo, 26, 1099-1106.

Carneiro, M. A. C., Siqueira, J. O., & Davide, A. C. (2004). Fósforo e inoculação com fungos micorrízicos arbusculares no estabelecimento de mudas de embaúba (Cecropia pachystachya trec). Pesquisa Agropecuária Tropical, 34, 119-125.

Dubois, M., Guiles, A., Hamilton, J. K., Rebers, P. A., & Smith, F. (1956). Colorimetric method for determination of sugars and related substances. Analytical Chemistry, 28, 350-356.

Gattai, G.S., Pereira, S.V., Costa, C.M.C., Lima, C.E.P., & Maia, L.C. (2011). Microbial activity, arbuscular mycorrhizal fungi and inoculation of woody plants in lead contaminated soil. Brazilian Journal of Microbiology, 42, 859-867.

Giovannetti, M., & Mosse, B. (1980). An evaluation of techniques for measuring vesicular arbuscular mycorrhizal infection in roots. New Phytologist, 84, 489-500.

Heldt, H.-W. (2005). Plant Biochemistry (3th ed.). Academic Press-Elsevier.

Kapoor, R., Giri, B., and Mukerji, & K. G. (2002). Glomus macrocarpum: a potential bioinoculant to improve essencial oil quality and concentration in Dill (Anethum graveolens L.) and Carum (Trachyspermum ammi (linn.) Sprague). World Journal of Microbiology and Biotechnology, 18, 459-463.

Lambais, M. R., Rios-Ruiz, W. F., & Andrade, R. M. (2003). Antioxidant responses in bean (Phaseolus vulgaris) roots colonized by arbuscular mycorrhizal fungi. New Phytologist, 160, 421-428.

Mandal, S., Evelin, H., Giri, B., & Singh, V. P. (2013). Arbuscular mycorrhiza enhances the production of stevioside and rebaudioside-A in Stevia rebaudiana via nutricional and non-nutricional mechanisms. Applied Soil Ecology, 72, 187-194.

Monteiro, J. M., Albuquerque, U. P., Lins Neto, E. M. F., Araújo, E. L., Albuquerque, M. M., & Amorim, E. L. C. (2006). The effects of seasonal climate changes in the Caatinga on tannin levels in Myracrodruon urundeuva (Engl.) Fr. All. And Anadenanthera colubrine (Vell.) Brenan. Brazilian Journal of Pharmacognosy, 16, 338-344.

Moreira, F. M. S., & Siqueira, J. O. (2002). Micorrizas. In: Microbiologia e bioquímica do solo (pp. 473-577). Editora UFLA.

Oliveira, M. S., Albuqerque, U. P., Campos, M. A. S., & Silva, F. S. B. (2013) Arbuscular mycorrhizal fungi (AMF) affects biomolecules content in Myracrodruon urundeuva seedlings. Industrial Crops and Products, 50, 244-247.

Pedone-Bonfim, M. V. L., Lins, M. A., Coelho, I. R., Santana, A. S., Silva, F. S. B., & Maia, L. C. (2013). Mycorrhizal technology and phosphorus in the production of primary and secondary metabolites in cebil (Anadenanthera colubrine (Vell.) Brenan) seedlings. Journal of the Science of Food and Agriculture, 93, 1479-1484.

Phillips, J. M., & Hayman, D. (1970). Improved procedures for clearing roots and staining parasitic and vesicular arbuscular mycorrhizal fungi for rapid assessment of infection. Transactions of the British Mycological Society, 55, 158-161.

Rufino, M. S. M., Alves, R. E., Brito, E. S., Morais, S. M., Sampaio, C. G., Pérez-Jiménez, J., & Saura-Calixto, F. D. (2007). Metodologia científica: determinação da atividade antioxidante total em frutas pela captura do radical livre DPPH. Comunicado Técnico 127, Fortaleza, CE, Embrapa Agroindústria Tropical.

Santos, E. L., Silva, F. A., & Silva, F. S. B. (2017). Arbuscular mycorrhizal fungi increase the phenolic compounds concentration in the bark of the stem of Libidibia ferrea in field conditions. The Open Microbiology Journal, 11, 283-291.

Santos, E. L., Muniz, B. C., Barbosa, B. G. V., Morais, M. M. C., Silva, F. A., Silva, F. S. B. (2021). Is AMF inoculation an alternative to maximize the in vitro antibacterial activity of Libidibia ferrea extracts? Research, Society and Development, 10, http://dx.doi.org/10.33448/rsd-v10i1.11435

Santos, E., L., Lins, E. F., & Silva, F.S.B. (2021). Mycorrhizal technology as a bioinsumption to produce phenolic compounds of importance to the herbal medicine industry. Research, Society and Development, 10, http://dx.doi.org/10.33448/rsd-v10i2.12856.

Shing, S., Pandey, A., Kumar, B., & Palni, L. M. S. (2010). Enhancement in growth and quality parameters of tea [Camelia sinensis (L.)] O. Kuntze] through inoculation with arbuscular mycorrhizal fungi in an acid soil. Biology and Fertility of Soils, 46:427-433.

Singh, N. V., Singh, S. K., Singh, A. K., Meshram, D. T., Suroshe, S. S., & Mishra, D. C. (2012). Arbuscular mycorrhizal fungi (AMF) induced harding of micropropagated pomegranate (Punica granatum L.) plantlets. Scientia Horticulturae, 136, 122-127.

Smith, S. E., & Read, D. J. (2008). Mycorrhizal symbiosis. (3rd ed.), Academic Press, Elsevier.

Toussaint, J. P., Smith, F. A., & Smith, S. E. (2007). Arbuscular mycorrhizal fungi can induce the production of phytochemicals in sweet basil in irrespective of phosphorus nutrition. Mycorrhiza, 17, 291-297.

Urcoviche, R. C., Gazim, Z. C., Dragunski, D. C., Barcellos, F. G., & Alberton, O. (2015). Plant growth and essential oil content of Mentha crispa inoculated with arbuscular mycorrhizal fungi under different levels of phosphorus. Industrial Crops and Products, 67, 103-107.

Zhang, Q.-R., Zhu, H.-H., Zhao, H.-Q., & Yao, Q. (2013). Arbuscular mycorrhizal fungal inoculation increases phenolics synthesis in clover roots via hydrogen peroxide, salicylic acid and nitric oxide signaling pathways. Journal of Plant Physiology, 170, 74-79.

Downloads

Published

02/04/2021

How to Cite

SILVA, F. A. da; SAMPAIO, E. V. de S. B.; SILVA, F. S. B. da; MAIA, L. C. . Use of arbuscular mycorrhizal fungi and phosphorus for increase in the concentration of compounds with antioxidant activity in Libidibia ferrea . Research, Society and Development, [S. l.], v. 10, n. 4, p. e13010413827, 2021. DOI: 10.33448/rsd-v10i4.13827. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/13827. Acesso em: 20 apr. 2024.

Issue

Section

Agrarian and Biological Sciences