Vasorrelaxamento em artéria pulmonar de rato induzido pelo monoterpeno timol: avaliação da dependência de fatores relaxantes derivados do endotélio

Autores

DOI:

https://doi.org/10.33448/rsd-v10i4.13971

Palavras-chave:

Artéria pulmonar; Vasorrelaxamento; Timol; Adenilil ciclase; Canais de cálcio dependentes de voltagem.

Resumo

Timol e carvacrol são os principais compostos encontrados no óleo essencial de Lippia mycrophylla (LM-OE) e apresentam atividade espasmolítica. Este trabalho foi desenvolvido a fim de explorar um possível efeito vasorrelaxante do LM-OE e seus constituintes majoritários sobre artéria pulmonar de ratos. Para tanto, o órgão foi estimulado in vitro com fenilefrina (Phe) 3 mM e, sobre a contração tônica, LM-OE, carvacrol e timol foram adicionados de maneira cumulativa, na ausência ou na presença de endotélio. Além disso, o efeito relaxante do timol foi avaliado na presença de atropina, L-NAME, indometacina, 2,3-O-isopropilideno adenosina, H-89 e Y-27632. Ademais, os efeitos do timol sobre as contrações tônicas induzidas por KCl 30 ou 80 mM e S-(-)-Bay K8644, bem como seu efeito inibitório nas contrações cumulativas induzidas por CaCl2. LM-OE, carvacrol e timol apresentaram efeito relaxante na artéria pulmonar, sendo o timol o mais potente. Sua potência relaxante em preparações com endotélio intacto foi reduzida pela atropina, L-NAME, indometacina, 2,3-O-isopropilideno adenosina e H-89, sem alteração do seu efeito relaxante máximo. Além disso, o monoterpeno relaxou de maneira equipotente a artéria pulmonar pré-contraída por KCl 30 ou 80 mM, antagonizou as contrações cumulativas induzidas por CaCl2 e relaxou o órgão pré-contraído por S-(-)-Bay K8644. Em última análise, a potência relaxante do timol não foi modificada por Y-27632. Portanto, o timol atua por mecanismos dependentes e independentes do endotélio, possivelmente modulando positivamente a via endotelial colinérgica, liberação de prostanoides e posterior ativação da via AC/PKA, bem como inibindo o influxo de Ca2+ pelo CaV.

Referências

Agra, M. F., Freitas, P. F., & Barbosa-Filho, J. M. (2007). Synopsis of the plants known as medicinal and poisonous in Northeast of Brazil. Revista Brasileira de Farmacognosia, 17, 114-140.

Alencar, A. K. N., Pereira, L. S., Silva, F. E. et al. (2013). A novel adenosine A2a receptor agonist attenuates the progression of monocrotaline-induced pulmonary hypertension in rats. Pulmonary & Respiratory Medicine, 4, 1-6.

Beer, A. M., Lukanov, J., & Sagorchev, P. (2007). Effect of Thymol on the spontaneous contractile activity of the smooth muscles. Phytomedicine, 14, 65-69.

Billington, C. K., & Hall, I. P. (2012). Novel cAMP signalling paradigms: therapeutic implications for airway disease. British Journal of Pharmacology, 166, 401-410.

Boskabady, M. H., Jafari, Z., & Pouraboli, I. (2011). The effect of carvacrol on muscarinic receptors of guinea‐pig tracheal chains. Phytotherapy Research, 25, 530-535.

Catterall, W. A. (2011). Structure and regulation of voltage-gated Ca2+ channels. Annual Review of Cell and Developmental Biology, 16, 521-555.

Chen, I. S., Dai, Z. K., Welsh, D. G. et al. (2011). Protein kinases modulate store-operated channels in pulmonary artery smooth muscle cells. Research Journal of Biological Sciences, 18, 1-12.

Choy, W. Y., Wong, Y. F., & Kwan, Y. W. (2002). Role of mitogen-activated protein kinase pathway in acetylcholine-mediated in vitro relaxation of rat pulmonary artery. European Journal of Pharmacology, 434, 55-64.

Clark, S. G., & Fuchs, L. C. (1997). Role of Nitric Oxide and Ca++-Dependent K+ Channels in Mediating Heterogeneous Microvascular Responses to Acetylcholine in Different Vascular Beds. Journal of Pharmacology and Experimental Therapeutics, 282, 1473–1479.

Dias-Junior, C. A., Cau, S. B. A., & Tanus-Santos, J. E. (2008). Papel do óxido nítrico na regulação da circulação pulmonar: implicações fisiológicas, fisiopatológicas e terapêuticas. Jornal Brasileiro de Pneumologia, 34, 412-419.

Furchgott, R. F., & Zawadzki, J. V. (1980). The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature, 288, 373–376.

Gao, Y., Portugal, A. D., Negash, S. et al. (2007). Role of Rho kinases in PKG-mediated relaxation of pulmonary arteries of etal lambs exposed to chronic high altitude hypoxia. American Journal of Physiology. Lung Cellular and Molecular Physiology, 292, 678–684.

Greyson, C. R. (2010). The Right Ventricle and Pulmonary Circulation: Basic Concepts. Revista Española de Cardiología, 63, 81-95.

Gurney, A. M. (1994). Mechanisms of drug-induced vasodilation. Journal of Pharmacy and Pharmacology, 46, 242-251.

Hall, I. P. (2000). Second messengers, ion channels and pharmacology of airway smooth muscle. European Respiratory Journal, 15, 1120–1127.

Huang, W., Yen, R. T., Mclaurine, M. et al. (1996). Morphometry of the human pulmonary vasculature. Journal of Applied Physiology, 81, 2123-2133.

Jeffery, T. K., & Wanstall, J. C. (2011). Pulmonary vascular remodeling in hypoxic rats: effects of amlodipine, alone and with perindopril. European Journal of Pharmacology, 416, 123–131.

Karasu-Minareci, E., Ozbudak, I. H., Ozbilim, G. et al. (2011). Acute Effects of Vardenafil on Pulmonary Artery Responsiveness in Pulmonary Hypertension. Scientific World Journal, 12, 1-6.

Knot, H. T., Brayden, E. J., & Nelson, M. T. (1996). Calcium channels and potassium channels. In: Bárány M (ed). Biochemistry of smooth muscle contraction. Elsevier Inc., 203-219.

Lau, E. M., Giannoulatou, E., Celermajer, D. S. et al. (2017). Epidemiology and treatment of pulmonary arterial hypertension. Nature Reviews Cardiology, 14, 603.

Magalhães, P. J., Lahlou, S., Jucá, D. M. et al. (2008). Vasorelaxation induced by the essential oil of Croton nepetaefolius and its constituents in rat aorta are partially mediated by the endothelium. Fundamental and Clinical Pharmacology, 22, 169-177.

Marques, A. J., & Filgueiras, C. A. L. (2009). O químico e o naturalista luso‑brasileiro Alexandre Antonio Vandelli. Quimica Nova, 32, 2492‑2500.

Moreira, F. V. (2013). Efeitos cardiovasculares do citral, monoterpenos majoritário do óleo essencial de Cymbopogon citratus, em ratos. Thesis (PhD in Health Sciences): Federal University of Sergipe.

Nagaoka, T., Morio, Y., Casanova, N. et al. (2004). Rho/Rho kinase signaling mediates increased basal pulmonary vascular tone in chronically hypoxic rats. American Journal of Physiology. Lung Cellular and Molecular Physiology, 287, 665–672.

Norel, X., Walch, L., Costantino, M. et al. (1996). M1 and M3 muscarinic receptors in human pulmonary arteries. British Journal of Pharmacology, 119, 149 157.

Pauvert, O., Lugnier, C., Keravis, T. et al. (2003). Effect of sildenafil on cyclic nucleotide phosphodiesterase activity, vascular tone and calcium signaling in rat pulmonary artery. British Journal of Pharmacology, 139, 513 522.

Peixoto-Neves, D., Silva-Alves, K. S., Gomes, M. D. M. et al. (2010). Vasorelaxant effects of the monoterpenic phenol isomers, carvacrol and thymol, on rat isolated aorta. Fundamental and Clinical Pharmacology, 24, 341–350.

Rees, D. D., Palmer, R. M. J., Schulz, R. et al. (1990). Characterization of three inhibitors of endothelial nitric oxide synthase in vitro and in vivo. British Journal of Pharmacology, 101, 746-752.

Ribeiro, T. P., Porto, D. L., Menezes, C. P. et al. (2010). Unravelling the cardiovascular effects induced by α-terpineol: A role for the nitric oxide-cGMP pathway. Clinical and Experimental Pharmacology and Physiology, 37, 811-816.

Rodrigues, F. F. G., Coutinho, H. D. M., Campos, A. R. et al. (2011). Antibacterial activity and chemical composition of essential oil Lippia microphylla Cham. Acta Scientiarum. Biological Sciences, 33, 141-144.

Rodríguez-Ramos, F., González-Andrade, M., & Navarrete, A. (2011). Gnaphaliin A and B relax smooth muscle of guinea-pig trachea and rat aorta via phosphodiesterase inhibition. Journal of Pharmacy and Pharmacology, 63, 926–935.

Ruan, C. H., Dixon, R. A. F., Willerson, J. T. et al. (2010). Prostacyclin Therapy for Pulmonary Arterial Hypertension. Texas Heart Institute Journal, 37, 391-399.

Sherwin, C. M., Christiansen, S. B., Duncan, I. J. et al. (2003). Guidelines for the ethical use of animals in applied ethology studies. Applied Animal Behaviour Science, 81, 291 305.

Singhal, S., Henderson, R., Horsfield, K. et al. (1973). Morphometry of the human pulmonary arterial tree. Circulation Research, 33, 190-197.

Sobolewski, A., Jourdan, K. B., Upton, P. D. et al. (2004). Mechanism of cicaprost-induced desensitization in rat pulmonary artery smooth muscle cells involves a PKA-mediated inhibition of adenylyl cyclase. American Journal of Physiology. Lung Cellular and Molecular Physiology, 287, 352–359.

Somlyo, A. P., & Somlyo, A. V. (2003). Ca2+ sensitivity of smooth muscle and non muscle myosin II: modulated by G proteins, kinases, and myosin phosphatase. Physiological Reviews, 83, 1325 1358.

Sommer, N., Ghofrani, H. A., Pak, O. et al. (2021). Current and future treatments of pulmonary arterial hypertension. British Journal of Pharmacology, 178, 6-30.

Subramani, J., Leo, M. D. M., & Kathirvel, K. (2010). Essential role of nitric oxide in sepsis-induced impairment of endothelium-derived hyperpolarizing factor-mediated relaxation in rat pulmonary artery. European Journal of Pharmacology, 630, 84-91.

Wang, Y., Gharahi, H., Grobbel, M. R. et al. (2021). Potential damage in pulmonary arterial hypertension: An experimental study of pressure‐induced damage of pulmonary artery. Journal of Biomedical Materials Research Part A, 109, 579–589.

Xavier, A. L., Pita, J. C. L. R., Brito, M. Y. et al. (2011). Chemical composition, antitumor activity, and toxicity of essential oil from the leaves of Lippia microphylla. Zeitschrift für Naturforschung, 70, 129 137.

Zahid, K. R., Raza, U., Chen, J. et al. (2020). Pathobiology of pulmonary artery hypertension: role of long non-coding RNAs. Cardiovascular research, 116, 1937-1947.

Zhang, S., Liu, Y., Guo, S. et al. (2010). Vasoactive intestinal polypeptide relaxes isolated rat pulmonary artery rings through two distinct mechanisms. Journal of Physiological Sciences, 60, 389–397.

Downloads

Publicado

11/04/2021

Como Citar

SAMPAIO, R. de S. .; OLIVEIRA, G. A. de .; VASCONCELOS, L. H. C. .; FERREIRA, P. B. .; SILVA, M. da C. C. .; TAVARES, J. F. .; CAVALCANTE, F. de A. .; SILVA, B. A. da . Vasorrelaxamento em artéria pulmonar de rato induzido pelo monoterpeno timol: avaliação da dependência de fatores relaxantes derivados do endotélio. Research, Society and Development, [S. l.], v. 10, n. 4, p. e29010413971, 2021. DOI: 10.33448/rsd-v10i4.13971. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/13971. Acesso em: 17 jul. 2024.

Edição

Seção

Ciências da Saúde