Produção mixotrófica de proteína de algas e análise tecno-econômica baseada na formulação do meio de cultivo

Autores

DOI:

https://doi.org/10.33448/rsd-v10i4.14186

Palavras-chave:

Spirulina platensis; Soro fetal bovino; Glicose; Proteina total; Análise de custo.

Resumo

O uso da Spirulina platensis para consumo humano, devido aos amplos benefícios obtidos como maior teor de proteínas, baixas calorias e alto valor nutricional, cresce a cada ano. Além disso, diversos estudos testaram meios de cultura alternativos para aumentar o nível de densidade da biomassa e o teor de proteína, além de reduzir os custos de produção. A glicose (GLC) é um componente conhecido usado para fornecer crescimento celular porque aumenta o conteúdo de carbono das microalgas; entretanto, não há registro do uso do soro fetal bovino (SFB), suplemento amplamente utilizado para cultura de células animais. O presente trabalho teve como objetivo analisar o efeito isolado e combinado da glicose e SFB, sinergismo e antagonismo no desenvolvimento da cultura de S. platensis. Uma análise técnico-econômica também foi proposta. O efeito entre GLC e SFB aumentou a densidade da biomassa (0,44 g/L) e o conteúdo de clorofila (0,72 mg/m3). No entanto, a condição com maior concentração de proteína parecia ser aquela suplementada apenas com SFB. O resultado mostrar que a produção de proteína não segue a mesma regra da densidade de biomassa. Além disso, a análise de custo-benefício mostrou ganhos de um empreendimento projetado com o DPBP de três anos.

Referências

Ak, I. (2012) Effect of an organic fertilizer on growth of blue-green alga Spirulina platensis. Aquaculture International, 20, 413–422. https://doi.org/10.1007/s10499-011-9473-5

Amer, L., Adhikari, B., & Pellegrino, J. (2011) Technoeconomic analysis of five microalgae-to-biofuels processes of varying complexity. Bioresource Technology, 102, 9350-9359. 10.1016/j.biortech.2011.08.010

Borowitzka, M. A. (1999) Commercial production of microalgae: ponds, tanks, tubes and fermenters. Journal of Biotechnology, 70, 313-321. https://doi.org/10.1016/S0168-1656(99)00083-8

Chang, Y., Wu, Z., Bian, L., Feng, D., & Leung, D. Y. C. (2013) Cultivation of Spirulina platensis for biomass production and nutrient removal from synthetic human urine. Applied Energy, 102, 427-431. https://doi.org/10.1016/j.apenergy.2012.07.024

Chen, F., & Zhang, Y. (1997) High cell density mixotrophic culture of Spirulina platensis on glucose for phycocyanin production using a fedbatch system. Enzyme and Microbial Technology, 20, 221-224. https://doi.org/10.1016/S0141-0229(96)00116-0

Chojnacka, K., & Noworyta, A. (2004) Evaluation of Spirulina sp. growth in photoautotrophic, heterotrophic and mixotrophic cultures. Enzyme and Microbial Technology, 34, 461-465. https://doi.org/10.1016/j.enzmictec.2003.12.002

Clesceri, L. S., Eaton, A. D., & Greenberg, A. E. (1998) Standard methods for the examination of water and wastewater, American Public Health Association, 20th ed., Washington D.C.

Coca, M., Barrocal, V., Lucas, S., González-Benito, G., & García-Cubero, M. (2015) Protein production in Spirulina platensis biomass using beetvinasse-supplemented culture media. Food and Bioproducts Processing, 94, 306-312. https://doi.org/10.1016/j.fbp.2014.03.012

Dar, B. A., Khaliq, R., Jha, G. N., Kour, P., & Qureshi, T. A. (2014) Protective effects of dietary Spirulina against cadmium chloride exposed histoarchitectural changes in the liver of freshwater catfish Clariasbatrachus (Linnaeus, 1758). Indian Journal of Fisheries, 61, 83-87. http://dx.doi.org/10.3126/on.v9i1.5737

Delrue, F., Alaux, E., Moudjaoui, L., Gaignard, C., Fleury, G., Perilhou, A., Richaud, P., Petitjean, M., & Sassi, J. F. (2017) Optimization of Arthrospira platensis (Spirulina) Growth: From Laboratory Scale to Pilot Scale. Fermentation, 3, 59-73. 10.3390/fermentation3040059

Dillon, J. C., Phuc, A. P., & Dubacq, J. P. (1995) Nutritional value of the alga Spirulina. World Review of Nutrition and Dietetics. 77, 32–46. DOI: 10.1159/000424464

Fogg, G. E., Stewart, W. D. P., Fay, P., & Walsby, A. E. (1973) The Blue-Green Algae, Academic Press.

Gstraunthaler, G. (2003) Alternatives to the Use of Fetal Bovine Serum: Serum-free Cell Culture, ALTEX 20, 4/03. http://www.altex.ch/resources/Altex_2003_4_275_281_Gstraunthaler.pdf.

Guillard, R. R. L., & Lorenzen, C. J. (1972) Yellow-green algae with chlorophyllid-c. Journal of Phycology, 8, 10-14. https://doi.org/10.1111/j.1529-8817.1972.tb03995.x

Guillard, R. R. L. (1973) Division rates. In. Stein (ed). Handbook of Phycological Methods.V. 1. Cambridge University Press. 289-312.

Habib, M. A. B., Parvin, M., Huntington, T. C., & Hasan, M. R. (2008) Review on Culture, Production and Use of Spirulina as Food for Humans and Feeds for Domestic Animals and Fish, FAO Fisheries and Aquaculture Circular, Rome.

Henrikson, R. (2009) Earth food Spirulina, (6a ed.), Ronore Enterprises.

Hosseini, S. M., Khosravi-Darani, K., & Mozafari, M. R. (2013) Nutritional and medical applications of Spirulina microalga. Mini Reviews in Medicinal Chemistry, 13, 1231–1237. 10.2174/1389557511313080009

International Serum Industry Association. What is bovine serum used for? http://www.serumindustry.org/documents/Use.pdf .

Jiménez, C., Belén, R. C., Diego, L., & Niella, F. X. (2003) The Feasibility of Industrial Production of Spirulina (Arthrospira) In Southern Spain. Aquaculture, 217, 179-190. https://doi.org/10.1016/S0044-8486(02)00118-7

Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951) Protein measurement with the folin phenol reagent. Journal of Biological Chemistry, 193, 265–275.

Michalak, I., & Chojnacka, K. (2015) Algae as production systems of bioactive compounds. Engineering in Life Science, 15, 160–176. https://doi.org/10.1002/elsc.201400191

Mohsenpour, S. F, & Richards, B., Willoughby, N. (2012) Spectral conversion of light for enhanced micro algae growth rates and photosynthetic pigment production. Bioresource Technology, 125, 75- 81. 10.1016/j.biortech.2012.08.072

Muliterno, A., Mosele, P. C., Costa, J. A. V., Hemkemeier, M., Bertolin, T. E., & Colla, L. M. (2005) Mixotrophic culture of Spirulina platensis microalgae in fed batch. Ciência e Agrotecnologia, 29, 1132-1138. https://doi.org/10.1590/S1413-70542005000600005

Petrides D. Bioprocess design. https://www.cri.or.th/en/mitthai/Announcement%20and%20Discussion%20Pages/BioprocessDesign.pdf.

Rangel-Yagui, C. O., Danesi, E. D. G., Carvalho, J. C. M., & Sato, S. (2004) Chlorophyll production from Spirulina platensis: cultivation with urea addition by fed-batch process. Bioresource Technology, 92, 133-141. 10.1016/j.biortech.2003.09.002

Richardson, J. W., Myriah, D. J., Xuezhi, Z., Peter, Z., Wei, C., & Qiang, H. (2014) A financial assessment of two alternative cultivationsystems and their contributions to algae biofuel economic viability. Algal Research, 4, 96–104. https://doi.org/10.1016/j.algal.2013.12.003

Rios, S. D., Torres, C. M., Torras, C., Salvado, J., Mateo-Sanz, J. M., & Jimenez, L. (2013) Microalgae-based biodiesel: economic analysis of downstream process realistic scenarios. Bioresource Technology, 136, 617–625. https://doi.org/10.1016/j.biortech.2013.03.046

Serag, M. A., Higazy, M. A., Basir, M., Mappiratu, H., Nilawati, J., Rahman, N., & Bohari, K. C., Burhanuddin, I. (2017) Production Methods, Economics and Effects of Spirulina Food Supplementation on Malnourished Children. International Journal of Scientific and Engineering Research, 8, 1111-1115.

Shelke, A. D., & Wani, G. P. (2015) Protective effect of dietary supplementation of Spirulina platensis on improvement of growth parameters in mercuric chloride exposed fish, Labeorohita. International Journal of Life Sciences, Special issue A3, 37- 41.

Slade, R., & Bauen, A. (2013) Micro-algae cultivation for biofuels: Cost, energy balance, environmental impacts and future prospects. Biomass and Bioenergy, 53, 29–38. https://doi.org/10.1016/j.biombioe.2012.12.019

Staines, D., & Price, P. (2003) Managing serum requirements for cell culture, GIBCO® Cell Culture.

Suali, E., & Sabartly, R. (2012) Conversion of microalgae to biofuel. Renewable and Sustainable Energy Reviews, 16, 4316-4342. https://doi.org/10.1016/j.rser.2012.03.047

Tortora, G. J. (2007) Microbiology: an introduction, 9th ed., San Francisco: Pearson Benjamin Cummings, The prokaryotes: domains bacteria and archae, 328-9.

Turton, R. (2012) Analysis, synthesis, and design of chemical processes, (4th ed.), Prentice Hall.

Von Der Weid, D., Dillon, J. C., & Falquet, J. (2000) Malnutrition: a silent massacre, Antenna Technology.

Downloads

Publicado

22/04/2021

Como Citar

FERREIRA, P. S. .; SANTOS, G. A. .; SOUZA, I. T. de .; NEIRO, S. M. da S. .; CARDOSO, V. L. .; BATISTA, F. R. X. Produção mixotrófica de proteína de algas e análise tecno-econômica baseada na formulação do meio de cultivo. Research, Society and Development, [S. l.], v. 10, n. 4, p. e54110414186, 2021. DOI: 10.33448/rsd-v10i4.14186. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/14186. Acesso em: 17 jul. 2024.

Edição

Seção

Engenharias