Emprego de inserts em silos metálicos: revisão sobre o padrão de fluxo dos produtos e distribuição das cargas na estrutura
DOI:
https://doi.org/10.33448/rsd-v10i4.14580Palavras-chave:
Fluxo de massa; fluxo do funil; obstrução de fluxo; pressão; processamento de partículas.; Fluxo de massa; Fluxo de funil; Obstrução de fluxo; Pressão; Processamento de partículas.Resumo
Os silos verticais são estruturas utilizadas pelas indústrias, setor agrícola e mineral para armazenar e conservar a granel, produtos sólidos granulares ou pulverulentos. Contudo, silos são estruturas que podem apresentar grande número de falhas estruturais e de fluxo, especialmente pela diversidade de variáveis que afetam o comportamento estrutural e a ausência de normas nacionais específicas para o cálculo de ações em silos. Na busca por novas alternativas que favoreçam a produção e reduzam custos sem afetar a qualidade do produto final, destaca-se o uso de inserts por reduzir problemas como descarregamento desuniforme, segregações, obstruções parciais ou totais no fluxo, reduzindo desta maneira possíveis prejuízos produtivos a indústria e problemas na integridade física do silo. Entretanto, a simples adoção de inserts em silos verticais sem um conhecimento prévio de algumas características como forma e dimensões mais apropriadas para cada situação pode não obter o resultado desejado além do fato de gerar problemas no fluxo dos produtos. Diante desta insegurança, a presente revisão teve como objetivo realizar uma abordagem sobre o comportamento de fluxo dos produtos armazenados e das pressões que ocorrem com a presença de inserções no interior da estrutura, apresentando resultados do emprego desses dispositivos em silos verticais, possibilitando a elaboração de projetos seguros, robustos e confiáveis.
Referências
AS- Australian Standart. (1996) AS 3774: Loads on bulks containers. Sydney, 1996.
Ayres, G. D. J.; do Nascimento, J. W. B. & Mascarenhas, N. M. H. (2020). Rompimento de arcos coesivos em silos verticais com emprego de pneumaticos: Uma revisão bibliográfica. Revista de Ciências Agrárias, 2020,43(4): 390-395.
Bandeira, D. J. A. ., Nascimento, J. J. da S., & Nascimento, J. W. B. do . (2020). Análise do fluxo de ração avícola em silos verticais esbeltos com insert de cone invertido . Research, Society and Development, 9(11), e63091110369.
Baroni, G. D.; Benedeti, P. H. & Seidel, D. J. (2017). Cenários prospectivos da produção e armazenagem de grãos no Brasil. Revista Thema, 14(4), 55-64.
Batista, C.S. (2009) - Estudo teórico e experimental do fluxo de sólidos particulados em silos verticais. Tese de Dou-torado, Campina Grande, Universidade Federal de Campina Grande.
Cabrejos Marín, F. (2018). Gravity reclaim stockpiles: What you need to know. Particulate Science & Technology, 36(4), 473–480.
Calil Júnior C (1990) Recomendações de fluxo e de cargas para o projeto de silos verticais. Tese (Livre Docência) – Escola de Engenharia de São Carlos, Universidade de São Paulo.
Calil Júnior, C. & Cheung, A. B. (2007). Silos: Pressões, fluxo, recomendações para o projeto e exemplos de cálculo. São Carlos: EESC. 232p.
CONAB - Companhia Nacional de Abastecimento (2020) Perspectivas para a agropecuária Safra 2020/2021. Perspec. agropec., Brasília, v.8 - safra 2020/21, p. 1-75, ago. 2020. Disponível em: http://www.conab.gov.br.
CONAB - Companhia Nacional de Abastecimento (2021) Acompanhamento safra brasileira de grãos, v.8– Safra 2020/21, n. 4 - Quarto levantamento, Brasília, p. 1-85, Janeiro 2021. ISSN 2318-7913. Disponível em: https://www.conab.gov.br/info-agro/safras/graos/boletim-da-safra-de-graos.
Couto, A.; Ruiz, A.; Herraez, L.; Moran, J. & Aguado, P. J. (2013b). Measuring pressures in a slender cylindrical silo for storing maize. Filling, static state and discharge with diferente material flow rates and comparison with Eurocode 1 part 4. Computers and Electronics in Agriculture, 96, 40–56.
Couto. A.; Ruiz, A. & Aguado, P. J. (2013a). Experimental study of the pressures exerted by wheat stored in slender cylindrical silos, varying the flow rate of material during discharge.Comparison with Eurocode 1 part 4. Powder Technol 237: 450–467.
Cox, G.; McCue, S.; Thamwattana, N. & Hill, J. (2005). Perturbation solutions for flow through symmetrical hoppers with inserts and asymmetrical wedge hoppers. Journal of Engineering Mathematics, 52, 63-9.
Deckers, H. P. F. (2014). Estudo teórico de pressões em silos esbeltos prismáticos com descarga excêntrica. Lavras : UFLA. Tese de Doutorado.
Ding S.; Lib H. LI.; Ooi J. Y. & Rotter, J. M. (2015). Prediction of flow patterns during silo discharges using a finiteelement approach and its preliminary experimental verification. Particuology, 18 (1), 42–49.
Ding, S.; Dyrøy, A.; Karlsen, M.; Enstad, G.G. & Jecmenica, M. (2011). Experimental Investigation of Load Exerted on a Double-Cone Insert and Effect of the Insert on Pressure Along Walls of a Large-Scale Axisymmetrical Silo. Particulate Science & Technology, 29 (2), 127-138.
Ding. S., De Silva, S. & Enstad, G. G. (2003) Effect of Passive Inserts on the Granular Flow from Silos Using Numerical Solutions. Particulate Science & Technology, 21, 211-226, 2003.
EN 1991-4: EUROCODE 1. Actions on structures - Part 4: Silos and tanks. European Committee for Normalisation. Bruxelas, 2006,108 p.
Fullard, L.A.; Godfrey, A.J.R.; Manaf, M.F.; Davies, C.E.; Cliff, A. & Fukuoka, M. (2020). Mixing experiments in 3D-printed silos; the role of wall friction and flow correcting inserts. Advanced Powder Technology, v. 31(5), 1915–1923.
Gallego, E.; Ruiz, A. & Aguado, P. J. (2015). Simulation of silo filling and discharge using ANSYS and comparison with experimental data. Computers and Electronics in Agriculture, 118, 281-289.
Hammadeh, H.; Askifi, F.; Ubysz, A.; Maj, M. & Zeno, A. (2019). Effect of using insert on the flow pressure in cylindrical silo. Studia Geotechnica et Mechanica, 41 (4), 177-183.
Hartl, J.; Ooi, J.Y.; Rotter, J.M.; Wojcikb, M.; Ding, S. & Enstad, G.G. (2008). The influence of a cone-in-cone insert on flow pattern and wall pressure in a full-scale silo. Chemical engineering research and design, 86(4), 370–378.
Horabik, J. Parafiniuk, P. & Molenda, M. (2016). Experiments and discrete element method simulations of distribution of static load of grain bedding at bottom of shallow model silo, Biosystems Engineering, 149, 60-71.
Hsiau. S. S.; Smida, J.; Chyou, Y. P.; Liu, T. C.; Huang,T. C. & Hsu, C. J. (2013). Impact of flow-corrective insert on flow patterns in two-dimensionalmoving bed. Chemical Engineering and Processing, 73(1), 7-15.
IBGE – Instituto Brasileiro de Geografia e Estatística (2020) Levantamento Sistemático da Produção Agrícola - Estatística da Produção Agrícola. 144 p. Disponível em: https://biblioteca.ibge.gov.br/visualizacao/periodicos/2415/epag_2020_dez.pdf.
International Organization for Standart. ISO 11697. Bases for design of structures: Loads due to bulk materials. Switzerland: International Standard. London, 2012.
Janssen, H. A. (1895). Experiments on grain pressures in silos. Verein Deutscher Ingenieure, 39, 1045-1049.
Jenike, A. W. & Johanson, J. R. (1968). Bin Loads. Journal of the Structural Division, 95(4), 1011-1042.
Johanson, J. R. & Kleysteuber, W. K. (1996). Flow corrective inserts in bins. Chemical Engineering Progress, 62, 79–83.
Kobyłka, R. & Molenda, M. (2014). DEM simulations of loads on obstruction attached to the wall of a model grain silo and of flow disturbance around the obstruction. Powder Technology, 256, 210–216.
Kobyłka, R.; Horabik, J. & Molenda, M. (2017). Numerical simulation of the dynamic response due to discharge initiation of the grain silo, International Journal of Solids and Structures, 106–107, 27-37.
Kobyłka, R.; Molenda, M. & Horabik, J. (2019). Loads on grain silo insert discs, cones, and cylinders: Experiment and DEM analysis. Powder Technology, v. 343(1), 521-532.
Kobyłka, R.; Molenda, M. & Horabik, J. (2020). DEM simulation of the pressure distribution and flow pattern in a model grain silo with an annular segment attached to the wall. Biosystems Engineering, 193(1), 75-89.
Koynov, S.; Glasser, B. & Muzzio, F. (2015). Comparison of three rotational shear cell testers: Powder flowability and bulk density. Powder Technology, 283, 103-112.
Li, Y.; Gui, N.; Yanga, X.; Tua, J. & Jianga, S. (2016). Effect of a flow-corrective insert on the flow pattern in a pebble bedreactor. Nuclear Engineering and Design, 300 (1), 495-505.
Lobato. J. C. M.; F. Mascarenhas. F. P.; Mesquita. A. L. A. & Mesquita. A. L. A. (2016).Conical Hopper Design for Mass Flow – Case of red mud. Holos. 2, 120 -131.
Lopes Neto, J. P., Nascimento, J. W. B., Lopes, F. F. M. (2012). Modelos De Previsão do Fluxo e Vazão De Descarga De Produtos Agrícolas. Revista Educação Agrícola Superior. 27 (1), 54-58.
Lopes Neto, J. P.; Nascimento, J. W. B. (2013). Características de fluxo e projeto de tremonhas cônicas em silos verticais. Revista Brasileira de Engenharia Agrícola e Ambiental, 17(3), 339-345.
Lopes Neto, J. P.; Nascimento, J. W. B. do, Silva, V. R. da, & Lopes, F. F. de M. (2007). Propriedade de fluxo e característica de escoabilidade de rações avícolas para dimensionamento de silos. Ciência e Agrotecnologia, 31(3), 851-859.
Lopes Neto, J. P.; Nascimento, J. W. B. do; Calil Junior, C. (2008). Análise estrutural de silos metálicos prismáticos. Ciência e Agrotecnologia, 32(4), 1252-1258.
Lopes Neto, J.P. (2009). Análise teórico experimental das forças verticais e de atrito em silos cilíndricos. Engenharia de Processos, Universidade Federal de Campina Grande. Tese de doutorado.
Lopes Neto, J.P.; Nascimento, J.W.B. & Silva, V.R. (2009) - Efeito do tempo de armazenagem de rações avíco-las no dimensionamento de silos. Revista de Engenharia Agrícola, vol. 29, n. 2, p. 518-527.
López, J., Pastorello, I. M. & Arce, A. I. C. (2014). Vazão facilitada de grãos de arroz de um silo cilíndrico usando "obstruções" esféricas ou cônicas. Revista Brasileira de Ensino de Física, 36(1), 1-5.
Mathews, J. C. & Wu, W. (2016). Model tests of silo discharge in a geotechnical centrifuge, Powder Technology, 293, 3-14.
Medeiros, I. F. (2012). Características de fluxo e vazão de descarga em silos verticais. Dissertação de Mestrado. Universidade Federal de Campina Grande, Campina Grande, PB, Brasil.
Mehretehran, A. M. & Maleki, S. (2018). 3D buckling assessment of cylindrical steel silos of uniform thickness under seismic action. Thin-Walled Structures, 131, 654-667.
Moysey, P. A.; Rama Rao, N. V. & Baird, M. H. I. (2013). Dynamic coefficient of friction and granular drag force in dense particle flows: Experiments and DEM simulations, Powder Technology, 248, 54-67.
Nascimento, J.W.B. & Bandeira, D.J.A. (2017) - Descarga em silos verticais sem obstrução do fluxo com uso de inserts. In: Anais do Congresso Técnico Científico da Engenharia e da Agronomia. Belém, Brasil, SOEA, p. 77-83.
Oginni, O. & Fasina, O. (2018). Theoretical estimation of silo design parameters for fractionated loblolly pine grinds – Moisture content and particle size effects. Industrial Crops and Products, 123, 379-385.
Olivares, M. C. V.; Benito, J.G.; Uñac, R.O. & Vidales, A. M. (2018). Towards a one parameter equation for a silo discharging model with inclined outlets. Powder Technology, 336, 265-272.
Palma, G. & Calil Júnior, C. (2008). Pressões e fluxo em silos esbeltos (H/D≥1,5). Caderno de Engenharia de Estruturas,10, 129-150.
Palma, G. (2005). Pressões e fluxos em silos esbeltos (h/d ≥ l,5). Escola de Engenharia de São Carlos, Universidade de São Paulo. São Carlos. Dissertação de Mestrado.
Park, H.W., Kim, S.T., Choung, M.G., Han, W.‐Y. & Yoon, W.B. (2016). Flow Behavior of Adzuki Bean Flour. Journal of Food Process Engineering, 39(4), 366-376.
Paula, W.C. (2020). Influência da geometria de tremonhas concêntricas e excêntricas nos esforços de silos esbeltos metálicos. Lavras : UFLA. Tese de Doutorado.
Pereira, A. S.; Shitsuka, D. M.; Parreira, F. J. & Shitsuka, R. (2018). Metodologia da pesquisa científica. [free e-book]. Santa Maria/RS. Ed. UAB/NTE/UFSM.
Ramírez-Gómez, Á. (2016). Research needs on biomass characterization to prevent handling problems and hazards in industry. Particulate Science & Technology, 34(4), 432–441.
Ramírez-Gómez, A. (2020). The discrete element method in silo/bin research. Recent advances and future trends. Particulate Science and Technology, 38(2), 210-227.
Ravenet, J. (1983) - Silos: flujo de vaciado de sólidos, formacion de bovedas. 1ª ed. Barcelona: Editores Técni-cos Asociados, 330p.
Reimbert, M. A. (1943). Recherches novelles sur les efforts exercs par les matieres pulverulentos ensilees sur les parois des silos. Annales Institute Technique du Batiment et des Travaux Publics. Series I. Nº 11, pags. 49-60.
Rodrigues, M. H. B. S.; Sousa, V. F. O.; Santos, G. L.; Nobrega, E. P. & Andrade, F. E. (2018). Armazenamento de grãos em pequenas propriedades de São Francisco, Paraíba, Brasil. Colloquium Agrariae, 14(2), 35-47.
Ruiz, A.; Couto, A. & Aguado, P.J. (2012). Design and instrumentation of a mid-size test station for measuring static and dynamic pressures in silos under different conditions - Part II: Construction and validation. Computers and Electronics in Agriculture, 85, 174-187.
Sadowski, A. J. & Rotter, J. M. (2011). Steel silos with different aspect ratios: I - behavior under concentric discharge. Journal of Constructional Steel Research, 67(10). 1537-1544.
Saleh, K.; Golshan, S. & Zarghami, R. (2018). A review on gravity flow of free-flowing granular solids in silos – Basics and practical aspects. Chemical Engineering Science, 192, 1011-1035.
Samsu, J., Zhou, X.; Pinson, D. & Sheng Chew. (2018). Flow and wall stress analysis of granular materials around blocks attached to a wall, Powder Technology, 330, 431-444.
Schuricht, T., Furll, C., & Enstad, G. G. (2009). Experimental and calculated loads oncone in cone installations. Particulate Science and Technology, 27(4), 286–296.
Silva, L. A. (2019). Efeito de inserts no padrão de fluxo e vazão mássica em silo vertical esbelto para farinha de milho flocada. Dissertação apresentada ao Programa de Pós-graduação em Engenharia Agrícola da Universidade Federal de Campina Grande, como parte das exigências para obtenção do título de Mestre em Engenharia Agrícola.
Silva, Neto. & Santos, T. L. (2019). O déficit na capacidade estática de armazenamento nas regiões centro-oeste e sul do Brasil. Revista de Economia e Agronegócio, 17(3), 507-530.
Slominski, C.; Niedostatkiewicz, M. & Tejchman, J. (2007). Application of particle image velocimetry (PIV) for deformation measurement during granular silo flow. Powder Technology, 173, 1-18.
Sun, S.; Zhao, J. & Zhang, C. (2018). Calculation of Silo Wall Pressure considering the Intermediate Stress Effect. Advances in Civil Engineering, 2018(1), 1–10.
Tascón, A. (2017) Design of silos for dust explosions: Determination of vent area sizes and explosion pressures. Engineering Structures, 134, 1-10.
TEIXEIRA, L. G. dos R. (2006). Determinação das propriedades físicas e de fluxo do café para projeto estrutural de silos e equipamentos. Dissertação (Mestrado em Engenharia Agrícola) -Universidade Federal de Lavras, Lavras.
Wang, Y.; Lu, Y. & Ooi, J. Y. (2015). A numerical study of wall pressure and granular flow in a flat-bottomed silo. Powder Technology, 282, 43-54.
Wójcik, M. & Tejchman, J. (2008). Application of an uncoupled ALE-formulation to conned granular flow in silos. The 12th International Conference of International Association for Computer Methods and Advances in Geomechanics (IACMAG), Goa, India, X, 1-6.
Wójcik, M.; Tejchman, J. & Enstad, G. G. (2012). Confined granular flow in silos with inserts — Full-scale experiments. Powder Technology, 222(1), 15 – 36.
Wójcik, M.;Sondej, M.; Rejowski, K. & Tejchman, J. (2017). Full-scale experiments on wheat flow in steel silo composed of corrugated walls and columns, Powder Technology, 311, 537-555.
Xue, J.; Schiano, S.; Zhong, W.; Chen, L. & Wu, C.Y. (2019). Determination of the flow/no-flow transition from a flat bottom hopper. Powder Technology, 358(1), p. 55-61.
Yang, S. C. & Hsiau, S. S. (2001). The simulation and experimental study of granular materials discharged from a silo with the placement of inserts. Powder Technology, 120(3), 244–255.
Yu, Xie.; Raeesi, A.; Ghaednia, H.; Heydariha, J.; Das, S. & Xie, S. (2017). Behavior of a Large Steel Field Silo Structure Subject to Grain Loading. Journal of Performance of Constructed Facilities, 31(5): 04017038.
Zhang, Y.; Jia, F.; Zeng, Y.; Han, Y. & Xiao. Y. (2018). DEM study in the critical height of flow mechanism transition in a conical silo. Powder Technology, 331, 98-106.
Zuriguel, I.; Janda, A.; Garcimartín, A.; Lozano, C.; Arévalo, R. & Maza, D. (2011). Silo clogging reduction by the presence of an obstacle. Physical Review Letters, 107(27), 278001, 2011.
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2021 Karoline Carvalho Dornelas; Gypson Dutra Junqueira Ayres; José Wallace Barbosa do Nascimento
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Autores que publicam nesta revista concordam com os seguintes termos:
1) Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
2) Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
3) Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado.