Complexos de nanofibras eletrofiadas e ácidos nucleicos: Uma revisão
DOI:
https://doi.org/10.33448/rsd-v10i5.14953Palavras-chave:
Nanofibras; Polinucleotídeos; Funcionalização.Resumo
A interação entre células e nanoestruturas poliméricas vem sendo considerado um importante tema para a biotecnologia. As fibras eletrofiadas apresentam estruturas porosas na ordem de submícrons com características que mimetizam os componentes fibrilares da matriz extracelular natural, favorecendo a atuação local efetiva de sistemas bioativos. A complexação de ácidos nucleicos com essas fibras e sua utilização em terapias de recuperação funcional e regeneração tecidual podem ser alternativas ao transplante celular e aos sistemas de entrega de proteínas indutivas. Na customização do perfil de interação entre essas matrizes e o material genético, é relevante manter a disponibilidade de seus tipos moleculares em concentrações efetivas no microambiente, com maior expressão gênica e maior tempo de ação terapêutica. Ao se buscar equilíbrio entre eficiência de transfecção e a viabilidade celular, diferentes estratégias são seguidas, como a incorporação de polinucleotídeos em soluções poliméricas ou em emulsões antes do processo de eletrofiação, ou mesmo a funcionalização de nanofibras pela modificação de sua superfície. Diante disso, esta revisão tem por finalidade apresentar os diferentes métodos de produção de nanofibras eletrofiadas funcionalizadas com ácidos nucleicos e suas aplicações na área da saúde.
Referências
Achille, C., Sundaresh, S., Chu, B., & Hadjiargyrou, M. (2012). Cdk2 silencing via a DNA/PCL electrospun scaffold suppresses proliferation and increases death of breast cancer cells. Plos One, 7(12), e52356. https://doi.org/10.1371/journal.pone.0052356
Akbar, Z., Zahoor, T., Huma, N., Jamil, A., Ayesha, H., & Irudayaraj, J. M. K. (2018). Electrospun probiotics: an alternative for encapsulation. Journal of Biological Regulators and Homeostatic Agents, 32(6), 1551–1556.
Baek, J., Lee, E., Lotz, M. K., & D’Lima, D. D. (2020). Bioactive proteins delivery through core-shell nanofibers for meniscal tissue regeneration. Nanomedicine: Nanotechnology, Biology, and Medicine, 23, 102090. https://doi.org/10.1016/j.nano.2019.102090
Balogh, A., Drávavölgyi, G., Faragó, K., Farkas, A., Vigh, T., Sóti, P. L., Wagner, I., Madarász, J., Pataki, H., Marosi, G., & Nagy, Z. K. (2014). Plasticized drug‐loaded melt electrospun polymer mats: characterization, thermal degradation, and release kinetics. Journal of Pharmaceutical Sciences, 103(4), 1278–1287. https://doi.org/10.1002/jps.23904
Balogh, A., Farkas, B., Faragó, K., Farkas, A., Wagner, I., Assche, I., Verreck, G., Nagy, Z. K., & Marosi, G. (2015). Melt-blown and electrospun drug-loaded polymer fiber mats for dissolution enhancement: A comparative study. Journal of Pharmaceutical Sciences, 104(5), 1767–1776. https://doi.org/10.1002/jps.24399
Baquero, F. (2004). From pieces to patterns: Evolutionary engineering in bacterial pathogens. Nature Reviews Microbiology, 2(6), 510–518. https://doi.org/10.1038/nrmicro909
Barbosa, J. D. A. B., de França, C. A., Gouveia, J. J. D. S., Gouveia, G. V., da Costa, M. M., & de Oliveira, H. P. (2019). Eudragit E100/poly(ethylene oxide) electrospun fibers for DNA removal from aqueous solution. Journal of Applied Polymer Science, 136(19). https://doi.org/10.1002/app.47479
Brown, T. D., Dalton, P. D., & Hutmacher, D. W. (2011). Direct writing by way of melt electrospinning. Advanced Materials, 23(47), 5651–5657. https://doi.org/10.1002/adma.201103482
Brown, T. D., Dalton, P. D., & Hutmacher, D. W. (2016). Melt electrospinning today: an opportune time for an emerging polymer process. Progress in Polymer Science, 56, 116–166. https://doi.org/10.1016/j.progpolymsci.2016.01.001
Cao, H., Jiang, X., Chai, C., & Chew, S. Y. (2010). RNA interference by nanofiber-based siRNA delivery system. Journal of Controlled Release, 144(2), 203–212. https://doi.org/10.1016/j.jconrel.2010.02.003
Chen, H. Y., Cheng, K. C., Hsu, R. J., Hsieh, C. W., Wang, H. T., & Ting, Y. (2020). Enzymatic degradation of ginkgolic acid by laccase immobilized on novel electrospun nanofiber mat. Journal of the Science of Food and Agriculture, 100(6), 2705–2712. https://doi.org/10.1002/jsfa.10301
Chen, L., Lv, J., Ding, L., Yang, G., Mao, Z., Wang, B., Feng, X., Zapotoczny, S., & Sui, X. (2020). A shape-stable phase change composite prepared from cellulose nanofiber/polypyrrole/polyethylene glycol for electric-thermal energy conversion and storage. Chemical Engineering Journal, 400, 125950. https://doi.org/10.1016/j.cej.2020.125950
Chen, W., Shen, X., Hu, Y., Xu, K., Ran, Q., Yu, Y., Dai, L., Yuan, Z., Huang, L., Shen, T., & Cai, K. (2017). Surface functionalization of titanium implants with chitosan-catechol conjugate for suppression of ROS-induced cells damage and improvement of osteogenesis. Biomaterials, 114, 82–96. https://doi.org/10.1016/j.biomaterials.2016.10.055
Cheng, J., Jun, Y., Qin, J., & Lee, S. H. (2017). Electrospinning versus microfluidic spinning of functional fibers for biomedical applications. Biomaterials, 114, 121–143. https://doi.org/10.1016/j.biomaterials.2016.10.040
Chew, S. Y., Wen, Y., Dzenis, Y., & Leong, K. W. (2006). The role of electrospinning in the emerging field of nanomedicine. Current Pharmaceutical Design, 12(36), 4751–4770.
Chou, S. F., Carson, D., & Woodrow, K. A. (2015, December). Current strategies for sustaining drug release from electrospun nanofibers. Journal of Controlled Release, 220, 584–591. https://doi.org/10.1016/j.jconrel.2015.09.008
Chronakis, I. S. (2015). Micro- and nano-fibers by electrospinning technology: processing, properties, and applications. In Micromanufacturing Engineering and Technology: Second Edition (pp. 513–548). Elsevier Inc. https://doi.org/10.1016/B978-0-323-31149-6.00022-0
Demirci, S., Celebioglu, A., & Uyar, T. (2014). Surface modification of electrospun cellulose acetate nanofibers via RAFT polymerization for DNA adsorption. Carbohydrate Polymers, 113, 200–207. https://doi.org/10.1016/j.carbpol.2014.06.086
Deshawar, D., & Chokshi, P. (2018). Analysis of axisymmetric instability in polymer melt electrospinning jet. Journal of Non-Newtonian Fluid Mechanics, 255, 1–12. https://doi.org/10.1016/j.jnnfm.2018.03.003
Deshawar, D., Gupta, K., & Chokshi, P. (2020). Electrospinning of polymer solutions: an analysis of instability in a thinning jet with solvent evaporation. Polymer, 202, 122656. https://doi.org/10.1016/j.polymer.2020.122656
Distler, O., Neidhart, M., Gay, R. E., & Gay, S. (2002). The molecular control of angiogenesis. International Reviews of Immunology, 21(1), 33–49. https://doi.org/10.1080/08830180210415
Divvela, M. J., Shepherd, L. M., Frey, M. W., & Joo, Y. L. (2018). Discretized modeling of motionless printing based on retarded bending motion and deposition control of electrically driven jet. 3D Printing and Additive Manufacturing, 5(3), 248–256. https://doi.org/10.1089/3dp.2017.0134
Doshi, J., & Reneker, D. H. (1995). Electrospinning process and applications of electrospun fibers. Journal of Electrostatics, 35(2–3), 151–160.
https://doi.org/10.1016/0304-3886(95)00041-8
Dvir, T., Timko, B. P., Kohane, D. S., & Langer, R. (2011). Nanotechnological strategies for engineering complex tissues. Nature Nanotechnology, 6(1), 13–22. https://doi.org/10.1038/nnano.2010.246
El-Basaty, A. B., Moustafa, E., Fouda, A. N., & El-Moneim, A. A. (2020). 3D hierarchical graphene/CNT with interfacial polymerized polyaniline nano-fibers. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 226, 117629. https://doi.org/10.1016/j.saa.2019.117629
Fang, X., & Reneker, D. H. (1997). DNA fibers by electrospinning. Journal of Macromolecular Science - Physics, 36(2), 169–173. https://doi.org/10.1080/00222349708220422
Gañán-Calvo, A. M. (1997). On the theory of electrohydrodynamically driven capillary jets. Journal of Fluid Mechanics, 335, 165–188. https://doi.org/10.1017/S0022112096004466
Gelain, F., Bottai, D., Vescovi, A., & Zhang, S. (2006). Designer self-assembling peptide nanofiber scaffolds for adult mouse neural stem cell 3-dimensional cultures. PLoS ONE, 1(1), e119. https://doi.org/10.1371/journal.pone.0000119
Greiner, A., & Wendorff, J. H. (2007). Electrospinning: a fascinating method for the preparation of ultrathin fibers. Angewandte Chemie - International Edition, 46(30), 5670–5703. https://doi.org/10.1002/anie.200604646
Habyarimana, T., Attaleb, M., Mazarati, J. B., Bakri, Y., & Mzibri, M. (2018). Detection of human papillomavirus DNA in tumors from Rwandese breast cancer patients. In Breast Cancer (Vol. 25, Issue 2, pp. 127–133). Springer Tokyo. https://doi.org/10.1007/s12282-018-0831-2
Han, T., Reneker, D. H., & Yarin, A. L. (2007). Buckling of jets in electrospinning. Polymer, 48(20), 6064–6076. https://doi.org/10.1016/j.polymer.2007.08.002
He, J., LI, H., Mchugh, A. D., Wang, Q., Li, H., Rasaily, R. G., & Sarker, K. K. (2012). Seed zone properties and crop performance as affected by three no-till seeders for permanent raised beds in arid northwest China. Journal of Integrative Agriculture, 11(10), 1654–1664. https://doi.org/10.1016/S2095-3119(12)60168-3
He, S., Xia, T., Wang, H., Wei, L., Luo, X., & Li, X. (2012). Multiple release of polyplexes of plasmids VEGF and bFGF from electrospun fibrous scaffolds towards regeneration of mature blood vessels. Acta Biomaterialia, 8(7), 2659–2669. https://doi.org/10.1016/j.actbio.2012.03.044
Honoré, I., Grosse, S., Frison, N., Favatier, F., Monsigny, M., & Fajac, I. (2005). Transcription of plasmid DNA: Influence of plasmid DNA/polyethylenimine complex formation. Journal of Controlled Release, 107(3), 537–546. https://doi.org/10.1016/j.jconrel.2005.06.018
Hou, J., Yang, J., Zheng, X., Wang, M., Liu, Y., & Yu, D. G. (2020). A nanofiber-based drug depot with high drug loading for sustained release. International Journal of Pharmaceutics, 583, 119397. https://doi.org/10.1016/j.ijpharm.2020.119397
Huan, S., Liu, G., Han, G., Cheng, W., Fu, Z., Wu, Q., & Wang, Q. (2015). Effect of experimental parameters on morphological, mechanical and hydrophobic properties of electrospun polystyrene fibers. Materials, 8(5), 2718–2734. https://doi.org/10.3390/ma8052718
Huang, Y., Bu, N., Duan, Y., Pan, Y., Liu, H., Yin, Z., & Xiong, Y. (2013). Electrohydrodynamic direct-writing. Nanoscale, 5(24), 12007–12017. https://doi.org/10.1039/c3nr04329k
Huang, Y., Duan, Y., Ding, Y., Bu, N., Pan, Y., Lu, N., & Yin, Z. (2014). Versatile, kinetically controlled, high precision electrohydrodynamic writing of micro/nanofibers. Scientific Reports, 4(1), 1–9. https://doi.org/10.1038/srep05949
Hui, N., Sun, X., Niu, S., & Luo, X. (2017). PEGylated polyaniline nanofibers: antifouling and conducting biomaterial for electrochemical DNA sensing. ACS Applied Materials and Interfaces, 9(3), 2914–2923. https://doi.org/10.1021/acsami.6b11682
Itaka, K., Harada, A., Yamasaki, Y., Nakamura, K., Kawaguchi, H., & Kataoka, K. (2004). In situ single cell observation by fluorescence resonance energy transfer reveals fast intra-cytoplasmic delivery and easy release of plasmid DNA complexed with linear polyethylenimine. Journal of Gene Medicine, 6(1), 76–84. https://doi.org/10.1002/jgm.470
Jacobs, V., Anandjiwala, R. D., & Maaza, M. (2010). The influence of electrospinning parameters on the structural morphology and diameter of electrospun nanofibers. Journal of Applied Polymer Science, 115(5), 3130–3136. https://doi.org/10.1002/app.31396
Jao, D., & Beachley, V. Z. (2019). Continuous dual-track fabrication of polymer micro-/nanofibers based on direct drawing. ACS Macro Letters, 588–595. https://doi.org/10.1021/acsmacrolett.9b00167
Joshi, V., Srivastava, C. M., Gupta, A. P., & Vats, M. (2020). Electrospun nano-architectures for tissue engineering and regenerative medicine (pp. 213–248). Springer, Cham. https://doi.org/10.1007/978-3-030-29207-2_7
Kara, Y., He, H., & Molnár, K. (2020). Shear‐aided high‐throughput electrospinning: a needleless method with enhanced jet formation. Journal of Applied Polymer Science, 137(37), 49104. https://doi.org/10.1002/app.49104
Kasyanenko, N., Afanasieva, D., Dribinsky, B., Mukhin, D., Nazarova, O., & Panarin, E. (2007). DNA interaction with synthetic polymers in solution. Structural Chemistry, 18(4), 519–525. https://doi.org/10.1007/s11224-007-9162-1
Ke, F., Luu, Y. K., Hadjiargyrou, M., & Liang, D. (2010). Characterizing DNA condensation and conformational changes in organic solvents. PLoS ONE, 5(10), e13308. https://doi.org/10.1371/journal.pone.0013308
Kerr-Phillips, T. E., Aydemir, N., Chan, E. W. C., Barker, D., Malmström, J., Plesse, C., & Travas-Sejdic, J. (2018). Conducting electrospun fibres with polyanionic grafts as highly selective, label-free, electrochemical biosensor with a low detection limit for non-Hodgkin lymphoma gene. Biosensors and Bioelectronics, 100, 549–555. https://doi.org/10.1016/j.bios.2017.09.042
Kim, H. S., & Yoo, H. S. (2010). MMPs-responsive release of DNA from electrospun nanofibrous matrix for local gene therapy: In vitro and in vivo evaluation. Journal of Controlled Release, 145(3), 264–271. https://doi.org/10.1016/j.jconrel.2010.03.006
Kim, H. S., & Yoo, H. S. (2013). Matrix metalloproteinase-inspired suicidal treatments of diabetic ulcers with siRNA-decorated nanofibrous meshes. Gene Therapy, 20(4), 378–385. https://doi.org/10.1038/gt.2012.49
Kim, J. F., Kim, J. H., Lee, Y. M., & Drioli, E. (2016). Thermally induced phase separation and electrospinning methods for emerging membrane applications: A review. AIChE Journal, 62(2), 461–490. https://doi.org/10.1002/aic.15076
Kondinskaia, D. A., & Gurtovenko, A. A. (2018). Supramolecular complexes of DNA with cationic polymers: The effect of polymer concentration. Polymer, 142, 277–284. https://doi.org/10.1016/j.polymer.2018.03.048
Kondinskaia, D. A., Kostritskii, A. Y., Nesterenko, A. M., Antipina, A. Y., & Gurtovenko, A. A. (2016). Atomic-scale molecular dynamics simulations of DNA-polycation complexes: two distinct binding patterns. Journal of Physical Chemistry B, 120(27), 6546–6554. https://doi.org/10.1021/acs.jpcb.6b03779
Košt’áková, E., Seps, M., Pokorny, P., & Lukas, D. (2014). Study of polycaprolactone wet electrospinning process. Express Polymer Letters, 8(8), 554–564.
Langmuir, I. (1916). The constitution and fundamental properties of solids and liquids. Journal of the American Chemical Society, 38(11), 2221–2295. https://doi.org/10.1021/ja02268a002
Li, D., & Xia, Y. (2004, July). Electrospinning of nanofibers: Reinventing the wheel? Advanced Materials, 16(14), 1151–1170. https://doi.org/10.1002/adma.200400719
Li, W. J., Shanti, R. M., & Tuan, R. S. (2007). Electrospinning technology for nanofibrous scaffolds in tissue engineering. Nanotechnologies for the Life Sciences, 9, 135–187.
Li, W. J., & Tuan, R. S. (2009). Fabrication and application of nanofibrous scaffolds in tissue engineering. In Current protocols in cell biology. https://doi.org/10.1002/0471143030.cb2502s42
Li, X., Zheng, Y., Mu, X., Xin, B., & Lin, L. (2020). The effects of electric field on jet behavior and fiber properties in melt electrospinning. Fibers and Polymers, 21(5), 984–992. https://doi.org/10.1007/s12221-020-9849-0
Liang, D., Luu, Y. K., Kim, K., Hsiao, B. S., Hadjiargyrou, M., & Chu, B. (2005). In vitro non-viral gene delivery with nanofibrous scaffolds. Nucleic Acids Research, 33(19), 1–10. https://doi.org/10.1093/nar/gni171
Liao, I. C., Chen, S., Liu, J. B., & Leong, K. W. (2009). Sustained viral gene delivery through core-shell fibers. Journal of Controlled Release, 139(1), 48–55. https://doi.org/10.1016/j.jconrel.2009.06.007
Liu, S., & Reneker, D. H. (2019). Droplet-jet shape parameters predict electrospun polymer nanofiber diameter. Polymer, 168, 155–158. https://doi.org/10.1016/j.polymer.2019.01.082
Liu, Y., Chen, J., Misoska, V., & Wallace, G. G. (2007). Preparation of novel ultrafine fibers based on DNA and poly(ethylene oxide) by electrospinning from aqueous solutions. Reactive and Functional Polymers, 67(5), 461–467. https://doi.org/10.1016/j.reactfunctpolym.2007.02.008
Liu, Z., Lu, Y., Confer, M. P., Cui, H., Li, J., Li, Y., Wang, Y., Street, S. C., Wujcik, E. K., & Wang, R. (2020). Thermally stable RuOx –CeO2 nanofiber catalysts for low-temperature CO oxidation . ACS Applied Nano Materials, 3(8), 8403–8413. https://doi.org/10.1021/acsanm.0c01815
Liu, Z., Ramakrishna, S., & Liu, X. (2020). Electrospinning and emerging healthcare and medicine possibilities. APL Bioengineering, 4(3), 030901. https://doi.org/10.1063/5.0012309
Luo, C. J., Stride, E., & Edirisinghe, M. (2012). Mapping the influence of solubility and dielectric constant on electrospinning polycaprolactone solutions. Macromolecules, 45(11), 4669–4680. https://doi.org/10.1021/ma300656u
Luu, Y. K., Kim, K., Hsiao, B. S., Chu, B., & Hadjiargyrou, M. (2003). Development of a nanostructured DNA delivery scaffold via electrospinning of PLGA and PLA-PEG block copolymers. Journal of Controlled Release, 89(2), 341–353. https://doi.org/10.1016/S0168-3659(03)00097-X
Maciel, B. G., Silva, R. J., Chávez-Guajardo, A. E., Medina-Llamas, J. C., Alcaraz-Espinoza, J. J., & de Melo, C. P. (2018). Magnetic extraction and purification of DNA from whole human blood using a γ-Fe2O3@Chitosan@Polyaniline hybrid nanocomposite. Carbohydrate Polymers, 197, 100–108. https://doi.org/10.1016/j.carbpol.2018.05.034
Malek-Khatabi, A., Javar, H. A., Dashtimoghadam, E., Ansari, S., Hasani-Sadrabadi, M. M., & Moshaverinia, A. (2020). In situ bone tissue engineering using gene delivery nanocomplexes. Acta Biomaterialia, 108, 326–336. https://doi.org/10.1016/j.actbio.2020.03.008
Monaghan, M., & Pandit, A. (2011, April). RNA interference therapy via functionalized scaffolds. Advanced Drug Delivery Reviews, 63(4), 197–208. https://doi.org/10.1016/j.addr.2011.01.006
Montinaro, M., Fasano, V., Moffa, M., Camposeo, A., Persano, L., Lauricella, M., Succi, S., & Pisignano, D. (2015). Sub-ms dynamics of the instability onset of electrospinning. Soft Matter, 11(17), 3424–3431. https://doi.org/10.1039/c4sm02708f
Nabzdyk, C. S., Chun, M. C., Oliver-Allen, H. S., Pathan, S. G., Phaneuf, M. D., You, J. O., Pradhan-Nabzdyk, L. K., & LoGerfo, F. W. (2014). Gene silencing in human aortic smooth muscle cells induced by PEI-siRNA complexes released from dip-coated electrospun poly(ethylene terephthalate) grafts. Biomaterials, 35(9), 3071–3079. https://doi.org/10.1016/j.biomaterials.2013.12.026
Nagiah, N., Johnson, R., Anderson, R., Elliott, W., & Tan, W. (2015). Highly compliant vascular grafts with gelatin-sheathed coaxially structured nanofibers. Langmuir, 31(47), 12993–13002. https://doi.org/10.1021/acs.langmuir.5b03177
Nie, H., Ho, M. L., Wang, C. K., Wang, C. H., & Fu, Y. C. (2009). BMP-2 plasmid loaded PLGA/HAp composite scaffolds for treatment of bone defects in nude mice. Biomaterials, 30(5), 892–901. https://doi.org/10.1016/j.biomaterials.2008.10.029
Nie, H., & Wang, C. H. (2007). Fabrication and characterization of PLGA/HAp composite scaffolds for delivery of BMP-2 plasmid DNA. Journal of Controlled Release, 120(1–2), 111–121. https://doi.org/10.1016/j.jconrel.2007.03.018
Okonkwo, U. A., & DiPietro, L. A. (2017). Diabetes and Wound Angiogenesis. International Journal of Molecular Sciences, 18(7), 1419. https://doi.org/10.3390/ijms18071419
Panoff, J. M., & Chuiton, C. (2004). Horizontal gene transfer: A universal phenomenon. Human and Ecological Risk Assessment, 10(5), 939–943. https://doi.org/10.1080/10807030490513928
Perez, M. A., Swan, M. D., & Louks, J. W. (2000). Microfibers and method of making (Patent No. 6110588). Google Patents.
Persano, L., Camposeo, A., Tekmen, C., & Pisignano, D. (2013, May). Industrial upscaling of electrospinning and applications of polymer nanofibers: A review. Macromolecular Materials and Engineering, 298(5), 504–520. https://doi.org/10.1002/mame.201200290
Phelps, E. A., & Garcia, A. J. (2009). Update on therapeutic vascularization strategies. Regenerative Medicine, 4(1), 65–80. https://doi.org/10.2217/17460751.4.1.65
Pike, R. D. (1999). Superfine microfiber nonwoven web (Patent No. 5935883). Google Patents.
Pouton, C. W., & Seymour, L. W. (2001). Key issues in non-viral gene delivery. Advanced Drug Delivery Reviews, 46(1–3), 187–203. https://doi.org/10.1016/S0169-409X(00)00133-2
Raemdonck, K., Vandenbroucke, R. E., Demeester, J., Sanders, N. N., & Smedt, S. C. (2008). Maintaining the silence: reflections on long-term RNAi. In Drug Discovery Today (Vol. 13, Issues 21–22, pp. 917–931). Elsevier Current Trends. https://doi.org/10.1016/j.drudis.2008.06.008
Ramalingam, K., Castro, R., Pires, P., Shi, X., Rodrigues, J., Xiao, S., & Tomás. (2016). Gene delivery using dendrimer/pDNA complexes immobilized in electrospun fibers using the Layer-by-Layer technique. RSC Advances, 6(99), 97116–97128. https://doi.org/10.1039/c6ra22444j
Rieux, A., Ucakar, B., Mupendwa, B. P. K., Colau, D., Feron, O., Carmeliet, P., & Préat, V. (2011). 3D systems delivering VEGF to promote angiogenesis for tissue engineering. Journal of Controlled Release, 150(3), 272–278. https://doi.org/10.1016/j.jconrel.2010.11.028
Roether, J., Bertels, S., Oelschlaeger, C., Bastmeyer, M., & Willenbacher, N. (2018). Microstructure, local viscoelasticity and cell culture suitability of 3D hybrid HA/collagen scaffolds. Plos One, 13(12), e0207397. https://doi.org/10.1371/journal.pone.0207397
Rujitanaroj, P. O., Wang, Y. C., Wang, J., & Chew, S. Y. (2011). Nanofiber-mediated controlled release of siRNA complexes for long term gene-silencing applications. Biomaterials, 32(25), 5915–5923. https://doi.org/10.1016/J.BIOMATERIALS.2011.04.065
Rujitanaroj, P., Wang, Y. C., Wang, J., & Chew, S. Y. (2011). Nanofiber-mediated controlled release of siRNA complexes for long term gene-silencing applications. Biomaterials, 32(25), 5915–5923. https://doi.org/10.1016/j.biomaterials.2011.04.065
Sakai, S., Yamada, Y., Yamaguchi, T., Ciach, T., & Kawakami, K. (2009). Surface immobilization of poly(ethyleneimine) and plasmid DNA on electrospun poly(L-lactic acid) fibrous mats using a layer-by-layer approach for gene delivery. Journal of Biomedical Materials Research Part A, 88A(2), 281–287. https://doi.org/10.1002/jbm.a.31870
Sandri, G., Rossi, S., Bonferoni, M. C., Caramella, C., & Ferrari, F. (2020). Electrospinning technologies in wound dressing applications. In Therapeutic Dressings and Wound Healing Applications (pp. 315–336). Wiley. https://doi.org/10.1002/9781119433316.ch14
Saraf, A., Baggett, L. S., Raphael, R. M., Kasper, F. K., & Mikos, A. G. (2010). Regulated non-viral gene delivery from coaxial electrospun fiber mesh scaffolds. Journal of Controlled Release, 143(1), 95–103. https://doi.org/10.1016/j.jconrel.2009.12.009
Sell, S. A., Wolfe, P. S., Garg, K., McCool, J. M., Rodriguez, I. A., & Bowlin, G. L. (2010). The Use of Natural Polymers in Tissue Engineering: A Focus on Electrospun Extracellular Matrix Analogues. Polymers, 2(4), 522–553. https://doi.org/10.3390/polym2040522
Shea, L. D., Smiley, E., Bonadio, J., & Mooney, D. J. (1999). DNA delivery from polymer matrices for tissue engineering. Nature Biotechnology, 17(6), 551–554. https://doi.org/10.1038/9853
Shepherd, L. M., Frey, M. W., & Joo, Y. L. (2017). Immersion electrospinning as a new method to direct fiber deposition. Macromolecular Materials and Engineering, 302(10), 1700148. https://doi.org/10.1002/mame.201700148
Smedt, S. C., Demeester, J., & Hennink, W. E. (2000). Cationic polymer based gene delivery systems. Pharmaceutical Research, 17(2), 113–126. https://doi.org/10.1023/A:1007548826495
Song, J., Li, Z., & Wu, H. (2020). Blowspinning: a new choice for nanofibers. ACS Applied Materials & Interfaces, 12(30), 33447–33464. https://doi.org/10.1021/acsami.0c05740
Sun, F., Chen, L., Ding, X., Xu, L., Zhou, X., Wei, P., Liang, J. F., & Luo, S. Z. (2017). High-Resolution Insights into the Stepwise Self-Assembly of Nanofiber from Bioactive Peptides. Journal of Physical Chemistry B, 121(31), 7421–7430. https://doi.org/10.1021/acs.jpcb.7b03626
Takahashi, T., Taniguchi, M., & Kawai, T. (2005). Fabrication of DNA nanofibers on a planar surface by electrospinning. Japanese Journal of Applied Physics, Part 2: Letters, 44(24–27), L860. https://doi.org/10.1143/JJAP.44.L860
Tan, S. C., & Yiap, B. C. (2009). DNA, RNA, and protein extraction: the past and the present. Journal of Biomedicine and Biotechnology, 2009. https://doi.org/10.1155/2009/574398
Tao, S. L., & Desai, T. A. (2007). Aligned arrays of biodegradable poly(ε-caprolactone) nanowires and nanofibers by template synthesis. Nano Letters, 7(6), 1463–1468. https://doi.org/10.1021/nl0700346
Taylor, G. I. (1969). Electrically driven jets. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, 313(1515), 453–475. https://doi.org/10.1098/rspa.1969.0205
Thakkar, S., & Misra, M. (2017). Electrospun polymeric nanofibers: new horizons in drug delivery. European Journal of Pharmaceutical Sciences, 107, 148–167. https://doi.org/10.1016/j.ejps.2017.07.001
Villarreal-Gómez, L. J., Cornejo-Bravo, J. M., Vera-Graziano, R., & Grande, D. (2016). Electrospinning as a powerful technique for biomedical applications: A critically selected survey. Journal of Biomaterials Science, Polymer Edition, 27(2), 157–176. https://doi.org/10.1080/09205063.2015.1116885
Wang, X., & Nakane, K. (2020). Preparation of polymeric nanofibers via immersion electrospinning. European Polymer Journal, 134, 109837. https://doi.org/10.1016/j.eurpolymj.2020.109837
Wu, R. A., Lin, C. W., & Tseng, W. J. (2017). Preparation of electrospun Cu-doped α-Fe2O3 semiconductor nanofibers for NO2 gas sensor. Ceramics International, 43, S535–S540. https://doi.org/10.1016/j.ceramint.2017.05.285
Xie, Q., Jia, L. N., Xu, H. Y., Hu, X. G., Wang, W., & Jia, J. (2016). Fabrication of core-shell PEI/pBMP2-PLGA electrospun Scaffold for gene delivery to periodontal ligament stem cells. Stem Cells International, 2016. https://doi.org/10.1155/2016/5385137
Xue, J., Wu, T., Dai, Y., & Xia, Y. (2019). Electrospinning and electrospun nanofibers: methods, materials, and applications. In Chemical Reviews (Vol. 119, Issue 8, pp. 5298–5415). American Chemical Society. https://doi.org/10.1021/acs.chemrev.8b00593
Xue, J., Xie, J., Liu, W., & Xia, Y. (2017). Electrospun nanofibers: new concepts, materials, and applications. Accounts of Chemical Research, 50(8), 1976–1987. https://doi.org/10.1021/acs.accounts.7b00218
Yang, P., Yang, L., Gao, Q., Luo, Q., Zhao, X., Mai, X., Fu, Q., Dong, M., Wang, J., Hao, Y., Yang, R., Lai, X., Wu, S., Shao, Q., Ding, T., Lin, J., & Guo, Z. (2019). Anchoring carbon nanotubes and post-hydroxylation treatment enhanced Ni nanofiber catalysts towards efficient hydrous hydrazine decomposition for effective hydrogen generation. Chemical Communications, 55(61), 9011–9014. https://doi.org/10.1039/c9cc04559g
Yang, Y., Li, X., Cheng, L., He, S., Zou, J., Chen, F., & Zhang, Z. (2011). Core-sheath structured fibers with pDNA polyplex loadings for the optimal release profile and transfection efficiency as potential tissue engineering scaffolds. Acta Biomaterialia, 7(6), 2533–2543. https://doi.org/10.1016/j.actbio.2011.02.031
Yang, Y., Xia, T., Chen, F., Wei, W., Liu, C., He, S., & Li, X. (2012). Electrospun fibers with plasmid bFGF polyplex loadings promote skin wound healing in diabetic rats. Molecular Pharmaceutics, 9(1), 48–58. https://doi.org/10.1021/mp200246b
Yar, A., Karabiber, A., Ozen, A., Ozel, F., & Coskun, S. (2020). Flexible nanofiber based triboelectric nanogenerators with high power conversion. Renewable Energy, 162, 1428–1437. https://doi.org/10.1016/j.renene.2020.08.030
Yarin, A. L., Koombhongse, S., & Reneker, D. H. (2001). Bending instability in electrospinning of nanofibers. Journal of Applied Physics, 89(5), 3018–3026. https://doi.org/10.1063/1.1333035
Yin, X., Yu, J., & Ding, B. (2020). Electrospun Fibers for Filtration. In Handbook of Fibrous Materials (pp. 175–206). Wiley. https://doi.org/10.1002/9783527342587.ch7
Yu, J. H., Fridrikh, S. V, & Rutledge, G. C. (2006). The role of elasticity in the formation of electrospun fibers. Polymer, 47(13), 4789–4797. https://doi.org/10.1016/j.polymer.2006.04.050
Zamani, M., Prabhakaran, M. P., & Ramakrishna, S. (2013). Advances in drug delivery via electrospun and electrosprayed nanomaterials. International Journal of Nanomedicine, 8(1), 3017. https://doi.org/10.2147/IJN.S43575
Zandi, N., Lotfi, R., Tamjid, E., Shokrgozar, M. A., & Simchi, A. (2020). Core-sheath gelatin based electrospun nanofibers for dual delivery release of biomolecules and therapeutics. Materials Science and Engineering C, 108, 110432. https://doi.org/10.1016/j.msec.2019.110432
Zhang, J., Duan, Y., Wei, D., Wang, L., Wang, H., Gu, Z., & Kong, D. (2011). Co-electrospun fibrous scaffold-adsorbed DNA for substrate-mediated gene delivery. Journal of Biomedical Materials Research Part A, 96A(1), 212–220. https://doi.org/10.1002/jbm.a.32962
Zheng, X., Bian, T., Zhang, Y., Zhang, Y., & Li, Z. (2020). Construction of ion-imprinted nanofiber chitosan films using low-temperature thermal phase separation for selective and efficiency adsorption of Gd(III). Cellulose, 27(1), 455–467. https://doi.org/10.1007/s10570-019-02804-3
Zhou, H., Green, T. B., & Joo, Y. L. (2006). The thermal effects on electrospinning of polylactic acid melts. Polymer, 47(21), 7497–7505. https://doi.org/10.1016/j.polymer.2006.08.042
Zhu, F., Xin, Q., Feng, Q., Zhou, Y., & Liu, R. (2015). Novel poly(vinylidene fluoride)/thermoplastic polyester elastomer composite membrane prepared by the electrospinning of nanofibers onto a dense membrane substrate for protective textiles. Journal of Applied Polymer Science, 132(26). https://doi.org/10.1002/app.42170
Ziabari, M., Mottaghitalab, V., & Haghi, A. K. (2010). A new approach for optimization of electrospun nanofiber formation process. Korean Journal of Chemical Engineering, 27(1), 340–354. https://doi.org/10.1007/s11814-009-0309-1
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2021 Edmo Henrique Martins Cavalcante; Helinando Pequeno de Oliveira

Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Autores que publicam nesta revista concordam com os seguintes termos:
1) Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
2) Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
3) Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado.