Biofortificação agronômica de arroz e trigo com zinco: Um estudo metanalítico

Autores

DOI:

https://doi.org/10.33448/rsd-v10i6.15133

Palavras-chave:

Produtividade; Conteúdo de Zinco nos grãos; Soberania alimentar; Nutrientes; Fome.

Resumo

Uma dieta baseada em cereais pode resultar em carência de elementos minerais essenciais, entre eles o zinco (Zn) A disponibilização desse elemento nas dietas pode ser por meio de suplementos, fortificantes alimentares ou por meio da biofortificação agronômica (AB), prática que pode ser adotada por agricultores. Diferentes estudos são realizados em países com condições locais específicas e a metanálise permite combinar resultados quantitativos de diferentes estudos, proporcionando uma síntese de resultados com alta confiabilidade. O objetivo deste trabalho foi analisar a resposta do arroz (Oryza spp.) E do trigo (Triticum spp.) À fertilização com zinco em relação à produtividade de grãos e acúmulo desse nutriente no grão. Foi realizada uma revisão sistemática e selecionados 16 artigos científicos dos últimos 5 anos. Destes, 179 estudos foram obtidos. O tamanho do efeito da aplicação de Zn via folha e/ou solo em arroz e trigo em relação ao controle sem aplicação foi calculado por meio do logaritmo natural (lnR) entre a razão do grupo tratamento e do grupo controle para ambas as variáveis. A biofortificação agronômica com Zn aumenta o rendimento de grãos (7%) e o teor de zinco nos grãos (53%), dependendo da espécie da planta e da forma de fertilização (via solo ou por pulverização foliar). A biofortificação agronômica pode ser uma estratégia para combater a desnutrição e garantir a soberania alimentar.

Referências

Afshardoost, M., & Eshaghi, M. S. (2020). Destination image and tourist behavioural intentions: A meta-analysis. Tourism Management, 81. https://doi.org/10.1016/j.tourman.2020.104154

Allen, L., Benoist, B. D., Dary, O., & Hurrell, R. (2006). Guidelines on food fortification with micronutrients. World Health Organization and Food and Agriculture Organization of the United Nations.

Amanullah & Inamullah (2016). Residual phosphorus and zinc influence wheat productivity under rice-wheat cropping system. SpringerPlus, 5, 1-9. 10.1186/s40064-016-1907-0

Bashir, K., Takahashi, R., Nakanishi, H., & Nishizawa, N. K. (2013). The road to micronutrient biofortification of rice: progress and prospects. Frontiers in Plant Science, 4(15), 1-7. https://doi.org/10.3389/fpls.2013.00015

Bliska, F. M. M., Vegro, L. R. & Bliska, A. A. (2009). A propagação da fome no mundo: questão financeira, tecnológica ou política? Ceres, 56(4), 379-389.

Biswas, J. C., Haque, M. M., Khan, F. H., Islam, M. R., Dipti, S. S., Akter, M., & Ahmed, H. U. (2018). Zinc fortification: Effect of polishing on parboiled and unparboiled rice. Current Plant Biology, 16, 22–26. https://doi.org/10.1016/j.cpb.2018.11.002

Biswas, A., Mukhopadhyay, D., & Biswas, A. (2015). Effect of Soil Zinc and Boron on the Yield and Uptake of Wheat in an Acid Soil of West Bengal, India. International Journal of Plant & Soil Science, 8, 203-217. https://doi.org/10.9734/IJPSS/2015/15921

Boius, E. H. (2018). Biofortification: An Agricultural Tool to Address Mineral and Vitamin Deficiencies. In: Mannar, M. G. V. & Hurrell, R. F. Food Fortification in a Globalized World. Academic Press, p. 69-81.

Borenstein, M., Hedges, L. V., Higgins, J. P. T., & Rothstein, H. R. (2009). Introduction to meta-analysis. John Wiley & Sons. 452 p.

Brasil Sobrinho, M. O. C., Freire, O., Abrahão, I. O., & Marconi, A. (1979). Zinco no solo e na planta. Revista agrícola, 54, 139-148.

Cakmak, I., & Kutman, U. B. (2018). Agronomic biofortification of cereals with zinc: a review. European Journal of Soil Science, 69, 172 –180. https://doi.org/10.1111/ejss.12437

Chattha, M. U., Hassan, M. U., Khan, I., Chattha, M. B., Mahmood, A., Chattha, M. U., Nawaz, M., Subhani, M. N., Kharal, M., & Khan, S. (2017). Biofortification of Wheat Cultivars to Combat Zinc Deficiency. Frontiers in Plant Science, 8, 1-8. https://doi.org/10.3389/fpls.2017.00281

Cheung, M. W. L., & Vijayakumar, R. A. (2016). Guide to Conducting a Meta-Analysis. Neuropsychology Review, 26, 121–128. https://doi.org/10.1007/s11065-016-9319-z

Cochran, W. G. (1954). The combination of estimates from different experiments. Biometrics, 10, 110-129.

Dai, Y., Zheng, H., Jiang, Z., & Xing, B. (2020). Combined effects of biochar properties and soil conditions on plant growth: A meta-analysis. Science of the Total Environment, 713. https://doi.org/10.1016/j.scitotenv.2020.136635

Das, S., Jahiruddin, M., Islam, M. R., Mahmud, A. A., Hossain, A., & Laing, A. M. (2020). Zinc Biofortification in the Grains of Two Wheat (Triticum aestivum L.) Varieties Through Fertilization. Acta Agrobotanica, 73, 1-13. https://doi.org/10.5586/aa.7312

Erenoglu, E. B., Kutman, U. B., Ceylan, Y., Yildiz, B., & Cakmak, I. (2011). Improved nitrogen nutrition enhances root uptake, root to shoot translocation and remobilization of zinc (65Zn) in wheat. New Phytologist, 189, 438–448. https://doi.org/10.1111/j.1469-8137.2010.03488.x

Gao, J., & Carmel, Y. (2020). A global meta-analysis of grazing effects on plant richness. Agriculture, Ecosystems and Environment, v. 302. https://doi.org/10.1016/j.agee.2020.107072

Gomez-Coronado, F., Poblaciones, M. J., Almeida, A. S., & Cakmak, I. (2016). Zinc (Zn) concentration of bread wheat grown under Mediterranean conditions as affected by genotype and soil/foliar Zn application. Plant Soil, 401,331–346. https://doi.org/10.1007/s11104-015-2758-0

Gunaratna, N. S., Groote, H., Nestel, P., Pixley, K. V., & Mccabe, G. P. (2010). A meta-analysis of community-based studies on quality protein maize. Food Policy, 35, 202–210. https://doi.org/10.1016/j.foodpol.2009.11.003

Hafeez, B., Khanif, Y.M., & Saleem, M. (2013). Role of Zinc in Plant Nutrition- A Review. American Journal of Experimental Agriculture, 3(2), 374-391.

He, H., Wu, M., Su, R., Zhang, Z., Chang, C., Peng, Q., Dong, Z., Pang, J., & Lambers, H. (2021). Strong phosphorus (P)-zinc (Zn) interactions in a calcareous soil-alfalfa system suggest that rational P fertilization should be considered for Zn biofortification on Zn-deficient soils and phytoremediation of Zn-contaminated soils. Plant Soil, 461, 119–134. https://doi.org/10.1007/s11104-020-04793-w

Hedges, L. V., Gurevitch, J. & Curtis, P. S. (1999). The meta-analysis of response ratios in experimental ecology. Ecology, 80(4), 1150-1156.

Higgins, J. P. T. & Thompson, S. G. (2002). Quantifying heterogeneity in a meta-analysis. Statistics in Medicine, 21, 1539–1558. https://doi.org/10.1002/sim.1186.

Higgins, J. P. T., Thompson, S. G., Deeks, J. J., & Altman, D. G. (2003). Measuring inconsistency in meta-analyses. Education and Debate, 327. https://doi.org/10.1136/bmj.327.7414.557.

Higgins, J. P. T., White, I. R., & Anzures-Cabrera, J. (2008). Meta-analysis of skewed data: combining results reported on log‐transformed or raw scales. Statistics in Medicine, 27, 6072-6092. https://doi.org/ 10.1002/sim.3427.

Hou, E., Luo, Y., Kuang, Y., Chen, C., Lu, X, Jiang, L., Luo, X., & Wen, D. (2020). Global meta-analysis shows pervasive phosphorus limitation of aboveground plant production in natural terrestrial ecosystems. Nature Communications, 11. https://doi.org/10.1038/s41467-020-14492-w.

Jaksomsak P., Tuiwong, P., Rerkasem, B., Guild, G., Palmer, L., Stangoulis, J., & Prom-u-Thai, C. T. (2018). The impact of foliar applied zinc fertilizer on zinc and phytate accumulation in dorsal and ventral grain sections of four thai rice varieties with different grain zinc. Journal of Cereal Science, 79, 6-12. https://doi.org/10.1016/j.jcs.2017.09.004

Jalal, A., Shah, S., Teixeira Filho, M. C. M., Khan, A., Shah, T., Ilyas, M., & Rosa, P. A. L. (2020). Agro-Biofortification of Zinc and Iron in Wheat Grains. Gesunde Pflanzen, 72, 227–236. https://doi.org/10.1007/s10343-020-00505-7

King, J. C. (2002). Evaluating the Impact of Plant Biofortification on Human Nutrition. The Journal of Nutrition, 132(3), 511–513. https://doi.org/10.1093/jn/132.3.511S

Kumar, R., & Bohra, J. S. (2014). Effect of NPKS and Zn application on growth, yield, economics and quality of baby corn.. Archives of Agronomy and Soil Science, 60(9), 1193-1206. https://doi.org/10.1080/03650340.2013.873122

Kumar, A., Choudhary, A. K., Pooniya, V., Suri, V. K., & Singh, U. (2016). Soil Factor Associated with Micronutrient Acquisition in Crops-Biofortification Perspective. Biofortification of Food Crops, 159-176, 2016. https://doi.org/10.1007/978-81-322-2716-8_13

Lajeunesse, M. J. (2011). On the meta-analysis of response ratios for studies with correlated and multi-group designs. Ecology, 92(11), 2049–2055. https://doi.org/10.1890/11-0423.1

Lehmann, A., & Rillig, M. C. (2015). Arbuscular mycorrhizal contribution to copper, manganese and iron nutrient concentrations in crops - a meta-analysis. Soil Biology & Biochemistry, 81, 147-158. https://doi.org/10.1016/j.soilbio.2014.11.013

Li, M., Wang, S., Tian, X., Li, S., Chen, Y., Jia, Z., Liu, K., & Zhao, A (2016). Zinc and iron concentrations in grain milling fractions through combined foliar applications of Zn and macronutrients. Field Crops Research, 187, 135–14. https://doi.org/10.1016/j.fcr.2015.12.018

Liu, Y. M., Liu, D. Y., Zhang, W., Chen, X. X., Qing-Yue Zhao, Q. Y., Chen, X. P., & Zou, C. Q. (2020). Health risk assessment of heavy metals (Zn, Cu, Cd, Pb, As and Cr) in wheat grain receiving repeated Zn fertilizers. Environmental Pollution, 257, 1-8. https://doi.org/10.1016/j.envpol.2019.113581

Mangueze, A. V. J., Pessoa, M. F. G., Silva, M. J., Ndayiragije, A., Magaia, H. E., Cossa, V. S. I., Reboredo, F. H., Carvalho, M. L., Santos, J. P., Guerra, M., Ribeiro-Barros, A. I., Lidon, F. C., & Ramalho, J. C. (2018). Simultaneous Zinc and selenium biofortification in rice. Accumulation, localization and implications on the overall mineral content of the flour. Journal of Cereal Science, 82, 34–41. https://doi.org/10.1016/j.jcs.2018.05.005

Martinez, E. Z. (2007). Metanálise de ensaios clínicos controlados aleatorizados: aspectos quantitativos. Medicina, 40, (2), 223-35. https://doi.org/10.11606/issn.2176-7262.v40i2p223-235

Montoya, M., Vallejo, A., Recio, J., Guardia, G., & Alvarez, J. M. (2020). Zinc–nitrogen interaction effect on wheat biofortification and nutrient use efficiency. Journal of Plant Nutrition and Soil Science, 1–11. https://doi.org/10.1002/jpln.201900339

Nahar, K., Jahiruddin, M., Islam, M. R., Khatun, S., Roknuzzaman, M., & Tipu, M. T. S. (2020). Biofortification of Rice Grain as Affected by Different Doses of Zinc Fertilization. Asian Soil Research Journal, 3, 1-6. https://doi.org/10.9734/asrj/2020/v3i130062

Okigami, H. (1996). Zinco- um estudo superficial. Journal Free Radical Biology & Medicine, 2(2), 37-41.

Quintana, D. S. (2015). From pre-registration to publication: a non-technical primer for conducting a meta-analysis to synthesize correlational data. Frontiers in Psychology, 6. https://doi.org/10.3389/fpsyg.2015.01549

Quijano-Guerta, C., Kirk, G. J. D., Portugal, A. M., Bartolome, V. I. & Mclaren, G. C. (2002). Tolerance of rice germplasm to zinc deficiency. Field Crops Research, 76(2–3), 123-130. https://doi.org/10.1016/S0378-4290(02)00034-5

Ramzan, Y., Hafeez, M. B., Khan, S., Nadeem, M., Rahman, S. U., Batool, S., & Ahmad, J. (2020). Biofortification with Zinc and Iron Improves the Grain Quality and Yield of Wheat Crop. International Journal of Plant Production, 501-510. https://doi.org/10.1007/s42106-020-00100-w

Rao, D. S., Neeraja, C. N., Babu, P. M., Nirmala, B., Suman, K., Rao, L. V. S., Surekha, K., Raghu, P., Longvah, T., Surendra, P., Rajesh, K., Babu, V., & Voleti, S. R. (2020). Zinc Biofortified Rice Varieties: Challenges, Possibilities, and Progress in India. Frontiers in Nutrition, 7. https://doi.org/10.3389/fnut.2020.00026

Rashid, A., Ram, H., Zou, C., Rerkasem, B., Duarte, A. P., Simunji, S., Yazici, A., Guo, S., Rizwan, M., Bal, R. S., Wang, Z., Malik, S. S., Phattarakul, N., Freitas, R. S., Lungu, O., Barros, V. L. N. P., & Cakmak, I. (2019). Effect of zinc-biofortified seeds on grain yield of wheat, rice, and common bean grown in six countries. Journal of Plant Nutrition and Soil Science, 182, 791–804. https://doi.org/10.1002/jpln.201800577

Saha, S., Chakraborty, M., Padhan, D., Saha, B., Murmu, S., Batabyal, K., Seth, A., Hazra, G. C., Mandal, B., & Bell, R. W. (2017). Agronomic biofortification of zinc in rice: Influence of cultivars and zinc application methods on grain yield and zinc bioavailability. Field Crops Research, 210, 52-60. https://doi.org/10.1016/j.fcr.2017.05.023

Silva, A. L., Canteri, M. G., Silva, A. J., & Bracale, M. F. (2017). Meta-analysis of the application effects of a biostimulant based on extracts of yeast and amino acids on off-season corn yield. Semina: Ciências Agrárias, 38(4), 2293-2304. http://dx.doi.org/10.5433/1679-0359.2017v38n4Supl1p2293

Silva, M. Z. T. (2020). A segurança e a soberania alimentares: conceitos e possibilidades de combate à fome no Brasil. Revista de Sociologia Configurações, 25, 97-111. https://doi.org/10.4000/configuracoes.8626

Silveira, D. T., & Códova, F. P. (2009). A pesquisa científica. In: Gerhardt, T. A., & Silveira, D. T. (org). Métodos de pesquisa. SEAD/UFRGS.

Singh, A. & Shivay, Y. S. (2013). Residual effect of summer green manure crops and Zn fertilization on quality and Zn concentration of durum wheat (Triticum durum Desf.) under a Basmati rice–durum wheat cropping system. Biological Agriculture & Horticulture, 29, 271–287. https://doi.org/10.1080/01448765.2013.832381

Singh, M. K., & Prasad, S. K. (2014). Agronomic Aspects of Zinc Biofortification in Rice (Oryza sativa L.). Proceedings of the National Academy of Sciences, India Section B: Biological Sciences, 84(3), 613–623. https://doi.org/10.1007/s40011-014-0329-4

Souza, G. A., Harta, J. J., Carvalho, J. G., Rutzke, M. A., Albrecht, J. C., Guilherme, L. R. G., Kochiana, L. V., & Li, L. (2014). Genotypic variation of zinc and selenium concentration in grains of Brazilian wheat lines. Plant Science, 224, 27-35. https://doi.org/10.1016/j.plantsci.2014.03.022

Stein, A. J., Meenakshi, J. V., Qaim, M., Nestel, P., Sachdev, H. P. S., & Bhutt, A. Z. A. (2005). Technical Monograph. Analyzing the Health Benefits of Biofortified Staple Crops by Means of the Disability-Adjusted Life Years Approach: A Handbook Focusing on Iron, Zinc and Vitamin A. Washington, WA: HarvestPlus, 85 p.

Stein, A. J., Nestel, P., Meenakshi, J. V., Qaim, M., Sachdev, P. S., & Bhutta, Z. A. (2007). Plant breeding to control zinc deficiency in India: how cost-effective is biofortification? Public Health Nutrition, 10(5), 492–501. https://doi.org/10.1017/S1368980007223857

Tupich, F. L. B., Fantin, L. H., Silva, A. L., & Canteri, M. G. (2017). Impacto do controle do mofo-branco com fluazinam na produtividade da soja no Sul do Paraná: metanálise. Summa Phytopathologica, 43(2), 145-150. http://dx.doi.org/10.1590/0100-5405/168479.

Viechtbauer, W. (2010). Conducting Meta-Analyses in R with the metapfor package. Journal of Statistical Software, 36(3).

Wang, Z., Liu, Q., Pan, F., Yuan, L., & Yin, X. (2015). Effects of increasing rates of zinc fertilization on phytic acid and phytic acid/zinc molar ratio in zinc bio-fortified wheat. Field Crops Research, 184, 58–64. https://doi.org/10.1016/j.fcr.2015.09.007

White, P. J., & Broadley, M. R. (2009). Biofortification of crops with seven mineral elements often lacking in human diets—iron, zinc, copper, calcium, magnesium, selenium and iodine. New Phytologist, 182(1), 49–84. https://doi.org/10.1111/j.1469-8137.2008.02738.x

WHO - World Health Organization? The World Health Report (2002). Reducing risks, promoting healthy life.

Zaman, Q. U., Aslam, Z., Yaseen, M.., Ihsan, M. Z., Khaliq, A., Fahad, S., Bashir, S., Ramzani, P. M. A., & Naeem, M. (2018). Zinc biofortification in rice: leveraging agriculture to moderate hidden hunger in developing countries Archives of Agronomy and Soil Science, 64, n. 2. https://doi.org/10.1080/03650340.2017.1338343

Zeffa, D. M., Fantin, L. H., Santos, O. J. A. P., Oliveira, A. L. M., Canteri, M. G., Scapim, C. A., & Goncalves, L. S. A. (2018). The influence of topdressing nitrogen on Azospirillum sp. inoculation in maize crops through meta-analysis. Bragantia, 77(3), 493-500. https://doi.org/10.1590/1678-4499.2017273

Zeffa, D. M., Fantin, L. H., Koltun, A., Oliveira, A. L. M., Nunes, M. P. B. A., Canteri, M. G., & Goncalves, L. S. A. (2020). Effects of plant growth-promoting rhizobacteria on co-inoculation with Bradyrhizobium in soybean crop: a meta-analysis of studies from 1987 to 2018. PeerJ. https://doi.org/10.7717/peerj.7905

Zou, C., Du, Y., Rashid, A., Ram, H., Savasli, E., Pieterse, PJ., Monasterio, O., Yazici, A., Kaur, C., Mahmood, K., Singh, S., Roux M. R. L., Kuang, W., Onder, O., Kalayci, M., & Cakmak, I. (2019). Simultaneous Biofortification of Wheat with Zinc, Iodine, Selenium, and Iron through Foliar Treatment of a Micronutrient Cocktail in Six Countries. Journal of Agricultural and Food Chemistry, 67, 1-8. https://doi.org/10.1021/acs.jafc.9b01829

Downloads

Publicado

04/06/2021

Como Citar

SORDI, E. .; NOVAKOWISKI, J. H. .; REBESQUINI, R.; BENEDETTI, T.; CARVALHO, I. R. .; LAUTENCHLEGER, F. .; BORTOLUZZI, E. C. . Biofortificação agronômica de arroz e trigo com zinco: Um estudo metanalítico. Research, Society and Development, [S. l.], v. 10, n. 6, p. e39210615133, 2021. DOI: 10.33448/rsd-v10i6.15133. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/15133. Acesso em: 17 jul. 2024.

Edição

Seção

Ciências Agrárias e Biológicas