O uso de Lopinavir e Ritonavir como alternativa terapêutica para a COVID-19
DOI:
https://doi.org/10.33448/rsd-v10i7.16505Palavras-chave:
Infecções por Coronavirus; Lopinavir; Ritonavir; Tratamento farmacológico.Resumo
A pandemia causada pelo novo coronavírus (SAR-CoV-2) representa um desafio para a saúde pública do mundo inteiro, em função da alta transmissibilidade do vírus, consequente sobrecarga dos sistemas de saúde e grande número de óbitos. Assim, estudos e pesquisas estão sendo realizados no intuito de identificar alternativas terapêuticas seguras e eficazes para a COVID-19, doença causada pelo SAR-CoV-2, visto que ainda não há um consenso nem evidência científica de que algum medicamento possa suprimir a excreção viral sem trazer massivos efeitos colaterais ao paciente. Nessa perspectiva, alguns fármacos estão sendo utilizados na prática clínica e, dentre eles, encontra-se a combinação do Lopinavir com o Ritonavir, antiretrovirais comumente utilizados no tratamento do HIV. O objetivo dessa revisão narrativa é analisar o uso da combinação Lopinavir/Ritonavir como alternativa terapêutica para a COVID-19. Os resultados indicam que a associação Lopinavir/Ritonavir tem sido utilizada como tratamento coadjuvante nos casos de COVID-19, normalmente combinada com outros medicamentos. Estudos sugerem que essa combinação não interfere no tempo de UTI e que a porcentagem de óbitos não é significativa. Quando aplicada no início dos sintomas, essas medicações causam redução na excreção viral e menor número de intubação. No entanto, há contradição referente a isso, já que alguns estudos sugerem aumento na excreção viral em pacientes que receberam esses medicamentos. Reforça-se a necessidade de intensificar os estudos relacionados ao tratamento para COVID-19 no sentido de gerar dados conclusivos para que as medicações possam ser utilizadas com eficácia e segurança.
Referências
Barros, B. C. S., Maia, A. B., Marques, M. A., Prette-Junior, P. R., Fiorelli, S. K. A. & Cerqueira, F. C. (2020). The role of Angiology and Vascular Surgery in the COVID-19 pandemic. Rev. Col. Bras. Cir., 47, 1-9.
Caetano, R., Silva, A. B., Guedes, A. C. C. M., Paiva, C. C. N., Ribeiro, G. R., Santos, D. L. & Silva, R. M. (2020). Desafios e oportunidades para telessaúde em tempos da pandemia pela COVID-19: uma reflexão sobre os espaços e iniciativas no contexto brasileiro. Cadernos de Saúde Pública, 36 (5), 1-16.
Cao, B., Wang, Y., Wen, D., Liu, W., Wang, J., Fan, G., Ruan, L., Song, B., Cai, Y., Wei, M., Li, X., Xia, J., Chen, N., Xiang, J., Yu, T., Bai, T., Xie, X., Zhang, L., Li, C., Yuan, Y., Chen, H., Li, H., Huang, H., Tu, S., Gong, F., Liu, Y., Wei, Y., Dong, C., Zhou, F., Gu, X., Xu, J., Liu, Z., Zhang, Y., Li, H., Shang, L., Wang, K., Li, K., Zhou, X., Dong, X., Qu, Z., Lu, S., Hu, X., Ruan, S., Luo, S., Wu, J., Peng, L., Cheng, F., Pan, L., Zou, J., Jia, C., Wang, J., Liu, X., Wang, S., Wu, X., Ge, Q., He, J., Zhan, H., Qiu, F., Guo, L., Huang, C., Jaki, T., Hayden, F. G., Horby, P. W., Zhang, D. & Wang, C. (2020). A Trial of Lopinavir–Ritonavir in Adults Hospitalized with Severe Covid-19. New England Journal of Medicine, 382 (19),1787-1799.
Chan, J. F. W., Chan, K. H., Kao, R. Y. T., To, K. K. W., Zheng, B. J., Li, C. P. Y., Li, P. T. W., Dai, J., Mok, F. K. Y., Chen, H., Hayden, F. G. & Yuen, K. Y. (2013). Broad-spectrum antivirals for the emerging Middle East respiratory syndrome coronavirus. J Infect, 67 (6), 606-616.
Chan, J. F. W., Yao, Y., Yeung, M. L., Deng, W., Bao, L., Jia, L., Li, F., Xiao, C., Gao, H., Yu, P., Cai, J. P., Chu, H., Zhou, J., Chen, H., Qin, C. & Yuen, K. Y. (2015). Treatment With Lopinavir/Ritonavir or Interferon-β1b Improves Outcome of MERS-CoV Infection in a Nonhuman Primate Model of Common Marmoset. J Infect Dis, 212 (12), 1904-1913.
Chan, K. S., Lai, S. T., Chu, C. M., Tsui, E., Tam, C. Y., Wong, M. M. L., Tse, M. W., Que, T. L., Peiris, J. S. M., Sung, J., Wong, V. C. W. & Yuen, K. Y. (2003). Treatment of severe acute respiratory syndrome with lopinavir/ritonavir: a multicentre retrospective matched cohort study. Hong Kong Med J, 9 (6), 399-406.
Chen, N., Min, Z., Dong, X., Jieming, Q., Gong, F., Han, Y., Qiu, Y., Wang, J., Liu, Y., Wei, Y., Xia, J., Yu, T., Zhang, X. & Zhang, L. (2020). Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. The Lancet, 395, 507-513.
Chen, Y. W., Yiu, C. P. B. & Wong, K. Y. (2020). Prediction of the SARS-CoV-2 (2019-nCoV) 3C-like protease (3CL) structure: virtual screening reveals velpatasvir, ledipasvir, and other drug repurposing candidates. F1000Res, 9 (129).
Cheng, C. Y., Lee, Y. L., Chen, C. P., Lin, Y. C., Liu, C. E., Liao, C. H. & Cheng, S. H. (2020). Lopinavir/ritonavir did not shorten the duration of SARS CoV-2 shedding in patients with mild pneumonia in Taiwan. Journal of Microbiology, Immunology and Infection, 53 (3), 488-492.
Chu, C. M., Cheng, V. V. C., Hung, I. F. N., Wong, M. M. L., Chan, K. H., Chan, K. S., Kao, R. Y. T., Poon, L. L. M., Wong, C. L. P., Guan, Y., Peiris, J. S. M. & Yuen, K. Y. (2004). Role of lopinavir/ritonavir in the treatment of SARS: initial virological and clinical findings. Thorax, 59(3), 252–256.
Deng, L., Li, C., Zeng, Q., Liu, X., Li, X., Zhang, H., Hong, Z. & Xia, J. (2020). Arbidol combined with LPV/r versus LPV/r alone against Corona Virus Disease 2019: A retrospective cohort study. J Infect, 81(1), 1-5.
Diao, B., Wang, C., Tan, Y., Chen, X., Liu, Y., Ning, L., Chen, L., Min, L., Liu, Y., Wang, G., Yuan, Z., Feng, Z., Zhang, Y., Wu, Y. & Chen, Y. (2020). Reduction and Functional Exhaustion of T Cells in Patients With Coronavirus Disease 2019 (COVID-19). Frontiers in Immunology, 11 (827), 1-7.
Fehr, A. R. & Perlman S. (2015). Coronaviruses: an overview of their replication and pathogenesis. Methods Mol Biol, 1282, 1-23.
Ferreira, B., Izar, F., Lemos, C. & Ribas, J. L. C. (2017). Antibióticos e antirretrovirais: uma abordagem biotecnológica. Rev. Saúde e Desenvolvimento, 11 (9), 234-248.
Guan, W., Ni, Z., Hu, Y., Liang, W., Ou, C., He, J., Liu, L., Shan, H., Lei, C., Hui, D. S. C., Du, B., Li, L., Zeng, G., Yuen, K. Y., Chen, R., Tang, C., Wang, T., Chen, P., Xiang, J., Li, S, Wang, J. L., Liang, Z. J., Peng, Y. X., Wei, L., Liu, Y., Hu, Y.H., Peng, P., Wang, J. M., Liu, J. Y., Chen, Z., Li, G., Zheng, Z. J., Qiu, S. Q., Luo, J., Ye, C.J., Zhu, S. Y. & Zhong, N. S. (2020). Clinical Characteristics of Coronavirus Disease 2019 in China. The New England Journal of Medicine, 382(18), 1708-1720.
Hamming, I., Timens, W., Bulthuis, M. L. C., Lely, A. T., Navis, G. J. & Goor, H. V. (2004). Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J Pathol, 203, 631–637.
Huang, C., Wang, Y., Li, X., Ren, L., Zhao, J., Hu, Y., Zhang, L., Fan, G., Xu, J., Gu, X., Cheng, Z., Yu, T., Xia, J., Wei, Y., Wu, W., Xie, X., Yin, W., Li, H., Liu, M., Xiao, Y., Gao, H., Guo, L., Xie, J., Wang, G., Jiang, R., Gao, Z., Jin, Q., Wang, J. & Cao, B. (2020). Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. The Lancet, 395(10223), 497-506.
Hung, I. F.N., Lung, K.C., Tso, E. Y.K., Liu, R., Chung, T. W.-H., Chu, M.-Y., Ng, Y.-Y., Lo, J., Chan, J., Tam, A. R., Shum, H.-P., Chan, V., Wu, A. K.-L., Sin, K.-M., Leung, W.-S., Law, W.-L., Lung, D. C., Sin, S., Yeung, P., Yip, C. C.-Y, Zhang, R.R, Fung, A.Y.-F., Yan, E.Y.-W., Leung, K.-H., Daniel, J., Chu, A.W.-H., Chan, W.-M., Ng, A.C.-K., Lee, R., Fung, K., Yeung, A., Wu, T.-C., Chan, J.W.-M., Yan, W.-W., Chan, W.-M., Chan, J.F.-W., Lie, A.K.-W., Tsang, O.T.-Y., Cheng, V.C.-C., Que, T.-L., Lau, C.-S., Chan, K.-H., To, K. K.-W. & Yuen, K.-Y. (2020). Triple combination of interferon beta-1b, lopinavir–ritonavir, and ribavirin in the treatment of patients admitted to hospital with COVID-19: an open-label, randomised, phase 2 trial. The Lancet, 395(10238), 1695-1704.
Kempf, D. J., Marsh, K. C., Kumar, G., Rodrigues, A. D., Denissen, J. F., McDonald, E., Kukulka, M. J., Hsu, A., Granneman, G. R., Baroldi, P. A., Sun, E., Pizzuti, D., Plattner, J. J., Norbeck, D. W. & Leonard, J. M. (1997). Pharmacokinetic enhancement of inhibitors of the human immunodeficiency virus protease by coadministration with ritonavir. Antimicrob Agents Chemother, 41(3), 654-660.
Kim, U. J., Won, E. J., Kee, S. J., Jung, S. I. & Jang, H. C. (2016). Combination therapy with lopinavir/ritonavir, ribavirin and interferon-α for Middle East respiratory syndrome. Antivir Ther, 21(5), 455-459.
Knoops, K., Kikkert, M., Worm, S. H. E., Dobbe, J. C. Z., Meer, Y., Koster, A. J., Mommaas, A. M. & Snijder, E. J. (2008). SARS-Coronavirus Replication Is Supported by a Reticulovesicular Network of Modified Endoplasmic Reticulum. PLoS Biol, 6(9), 1957-1974.
Lecronier, M., Beurton, A., Burrel, S., Haudebourg, L., Deleris, R., Le Marec, J., Virolle, S., Nemlaghi, S., Bureau, C., Mora, P., De Sarcus, M., Clovet, O., Duceau, B., Grisot, P. H., Pari, M. H., Arzoine, J., Clarac, U., Boutolleau, D., Raux, M., Delemazure, J., Faure, M., Decavele, M., Morawiec, E., Mayaux, J., Demoule, A. & Dres, M. (2020). Comparison of hydroxychloroquine, lopinavir/ritonavir, and standard of care in critically ill patients with SARS-CoV-2 pneumonia: an opportunistic retrospective analysis. Critical Care, 24(1), 418.
Letko, M., Marzi, A. & Munster, V. (2020). Functional assessment of cell entry and receptor usage for SARS-CoV-2 and other lineage B betacoronaviruses. Nature Microbiology, 5, 562–569
Li, G., Fan, Y., Lai, Y., Han, T., Li, Z., Zhou, P., Pan, P., Wang, W., Hu, D., Liu, X., Zhang, Q. & Wu, J. (2020). Coronavirus infections and immune responses. J Med Virol, 92(4), 424-432.
Lim, J., Jeon, S., Shin, H. Y., Kim, M. J., Seong, Y. M., Lee, W. J., Choe, K. W., Kang, Y. M., Lee, B. & Park, S. J. (2020). Case of the Index Patient Who Caused Tertiary Transmission of Coronavirus Disease 2019 in Korea: the Application of Lopinavir/Ritonavir for the Treatment of COVID-19 Pneumonia Monitored by Quantitative RT-PCR. J Korean Med Sci, 35(6), e79.
Lipworth, B., Chan, R., Lipworth, S. & Kuo, C. R. (2020). Weathering the Cytokine Storm in Susceptible Patients with Severe SARS-CoV-2 Infection. The Journal of Allergy and Clinical Immunology: In Practice, 8(6), 1798–1801.
Liu, F., Xu, A., Zhang, Y., Xuan, W., Yan, T., Pan, K., Yu, W. & Zhang, J. (2020). Patients of COVID-19 may benefit from sustained Lopinavir-combined regimen and the increase of Eosinophil may predict the outcome of COVID-19 progression. International Journal of Infectious Diseases, 95, 183-191.
Lu, C. C., Chen, M. Y., Lee, W. S. & Chang, Y. L. (2020). Potential therapeutic agents against COVID-19: What we know so far. Journal of the Chinese Medical Association, 83(6), 534–536.
Lu, R., Zhao, X., Li, J., Niu, P., Yang, B., Wu, H., Wang, W., Song, H., Huang, B., Zhu, N., Bi, Y., Ma, X., Zhan, F., Wang, L., Hu, T., Zhou, H., Hu, Z., Zhou, W., Zhao, L., Chen, J., Meng, Y., Wang, J., Lin, Y., Yuan, J., Xie, Z., Ma, J., Liu, W.J., Wang, D., Xu, W., Holmes, E.C., Gao, G.F., Wu, G., Chen, W., Shi, W. & Tan, W. (2020). Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. The Lancet, 395(10224).
Millet, J. K. & Whittaker, G. R. (2015). Host cell proteases: Critical determinants of coronavirus tropism and pathogenesis. Virus Research, 202, 120–134.
Nukoolkarn, V., Lee, V. S., Malaisree, M., Aruksakulwong, O. & Hannongbua, S. (2008). Molecular dynamic simulations analysis of ritonavir and lopinavir as SARS-CoV 3CLpro inhibitors. Journal of Theoretical Biology, 254(4), 861–867.
Panagopoulos, P., Petrakis, V., Panopoulou, M., Trypsianis, G., Penlioglou, T., Pnevmatikos, I. & Papazoglou, D. (2020). Lopinavir/ritonavir as a third agent in the antiviral regimen for SARS-CoV-2 infection. Journal of Chemotherapy, 33(3), 193–197.
Porche, D. J. (2001). Lopinavir/Ritonavir. Journal of the Association of Nurses in AIDS Care, 12(2), 101–104.
Ragab, D., Salah, E.H., Taeimah, M., Khattab, R. & Salem, R. (2020). The COVID-19 Cytokine Storm, What We Know So Far. Frontiers in Immunology, 11.
Sham, H. L., Kempf, D. J., Molla, A., Marsh, K. C., Kumar, G. N., Chen, C. M., Kati, W., Stewart, K., Lal, R., Hsu, A., Betebenner, D., Korneyeva, M., Vasavanonda, S., McDonald, E., Saldivar, A., Wideburg, N., Chen, X., Niu, P., Park, C. & Jayanti, V. (1998). ABT-378, a Highly Potent Inhibitor of the Human Immunodeficiency Virus Protease. Antimicrobial Agents and Chemotherapy, 42(12), 3218–3224.
Spanakis, N., Tsiodras, S., Haagmans, B. L., Raj, V. S., Pontikis, K., Koutsoukou, A., Koulouris, N. G., Osterhaus, A. D. M. E., Koopmans, M. P. G. & Tsakris, A. (2014). Virological and serological analysis of a recent Middle East respiratory syndrome coronavirus infection case on a triple combination antiviral regimen. International Journal of Antimicrobial Agents, 44(6), 528–532.
Thompson, M.G., Burgess, J. L., Naleway, A. L., Tyner, H. L., Yoon, S. K., Meece, J., Olsho, L. E. W., Caban-Martinez, A. J., Fowlkes, A., Lutrick, K., Kuntz, J. L., Dunnigan, K., Odean, M. J., Hegmann, K. T., Stefanski, E., Edwards, L. J., Schaefer-Solle, N., Grant, L., Ellingson, K., Groom, H. C., Zunie, T., Thiese, M. S., Ivacic, L., Wesley, M. G., Lamberte, J. M., Sun, X., Smith, M. E., Phillips, A. L., Groover, K. D., Yoo, Y. M., Gerald, J., Brown, R. T., Herring, M. K., Joseph, G., Beitel, S., Morrill, T. C., Mak, J., Rivers, P., Harris, K. M., Hunt, D. R., Arvay, M. L., Kutty, P., Fry, A. M., Gaglani, M. (2021) Interim Estimates of Vaccine Effectiveness of BNT162b2 and mRNA-1273 COVID-19 Vaccines in Preventing SARS-CoV-2 Infection Among Health Care Personnel, First Responders, and Other Essential and Frontline Workers - Eight U.S. MMWR Morb Mortal Wkly, 70(13):495-500.
Tian, S., Xiong, Y., Liu, H., Niu, L., Guo, J., Liao, M. & Xiao, S. Y. (2020). Pathological study of the 2019 novel coronavirus disease (COVID-19) through postmortem core biopsies. Modern Pathology, 33(6), 1007–1014.
Tomasselli, A. G. & Heinrikson, R. L. (2000). Targeting the HIV-protease in AIDS therapy: a current clinical perspective. Biochimica et Biophysica Acta (BBA) - Protein Structure and Molecular Enzymology, 1477(1-2), 189–214.
Wang, Q., Zhao, Y., Chen, X. & Hong, A. (2020). Virtual screening of approved clinic drugs with main protease (3CLpro) reveals potential inhibitory effects on SARS-CoV-2. Journal of Biomolecular Structure and Dynamics, 1–11.
Weiss, S. R. & Leibowitz, J. L. (2011). Coronavirus Pathogenesis. Advances in Virus Research, 85–164.
Wilde, A. H., Jochmans, D., Posthuma, C. C., Zevenhoven-Dobbe, J. C., van Nieuwkoop, S., Bestebroer, T. M., van den Hoogen, B. G., Neyts, J. & Snijder, E. J. (2014). Screening of an FDA-Approved Compound Library Identifies Four Small-Molecule Inhibitors of Middle East Respiratory Syndrome Coronavirus Replication in Cell Culture. Antimicrobial Agents and Chemotherapy, 58(8), 4875–4884.
World Health Organization (2020). “Solidarity” clinical trial for COVID-19 treatments. https://www.who.int/emergencies/diseases/novel-coronavirus-2019/global-research-on-novel-coronavirus-2019-ncov/solidarity-clinical-trial-for-covid-19-treatments.
Wrapp, D., Wang, N., Corbett, K. S., Goldsmith, J. A., Hsieh, C. L., Abiona, O., Graham, B. S. & McLellan, J. S. (2020). Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science, 367(6483), 1260–1263.
Wu, C. Y., Ja, J. T., Ma, S. H., Kuo, C. J., Juan, H. F., Cheng, Y. S., E Hsu, H. H., Huang, H. C., Wu, D., Brik, A., Liang, F. S., Liu, R. S., Fang, J. M., Chen, S. T., Liang, P. H. & Wong, C. H. (2004). Small molecules targeting severe acute respiratory syndrome human coronavirus. Proceedings of the National Academy of Sciences, 101(27), 10012–10017.
Wu, Z. & McGoogan, J. M. (2020). Characteristics of and Important Lessons From the Coronavirus Disease 2019 (COVID-19) Outbreak in China. JAMA, 323(13), 1239.
Xu, Z., Shi, L., Wang, Y., Zhang, J., Huang, L., Zhang, C., Liu, S., Zhao, P., Liu, H., Zhu, L., Tai, Y., Bai, C., Gao, T., Song, J., Xia, P., Dong, J., Zhao, J. & Wang, F.S. (2020). Pathological findings of COVID-19 associated with acute respiratory distress syndrome. The Lancet Respiratory Medicine, 8(4), 420–422.
Xu, X., Chen, P., Wang, J., Feng, J., Zhou, H., Li, X., Zhong, W. & Hao, P. (2020). Evolution of the novel coronavirus from the ongoing Wuhan outbreak and modeling of its spike protein for risk of human transmission. Science China Life Sciences, 63(3), 457–460.
Yamamoto, N., Yang, R., Yoshinaka, Y., Amari, S., Nakano, T., Cinatl, J., Rabenau, H., Doerr, H. W., Hunsmann, G., Otaka, A., Tamamura, H., Fujii, N. & Yamamoto, N. (2004). HIV protease inhibitor nelfinavir inhibits replication of SARS-associated coronavirus. Biochemical and Biophysical Research Communications, 318(3), 719–725.
Yan, D., Liu, X.Y., Zhu, Y., Huang, L., Dan, B., Zhang, G. & Gao, Y. (2020). Factors associated with prolonged viral shedding and impact of lopinavir/ritonavir treatment in hospitalised non-critically ill patients with SARS-CoV-2 infection. European Respiratory Journal, 56(1), 2000799.
Yan, R., Zhang, Y., Li, Y., Xia, L., Guo, Y. & Zhou, Q. (2020). Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2. Science, 367(6485), 1444–1448.
Ye, Q., Wang, B. & Mao, J. (2020). The pathogenesis and treatment of the `Cytokine Storm’ in COVID-19. Journal of Infection, 80(6), 607–613.
Ye, X. T., Luo, Y. L., Xia, S. C., Sun, Q. F., Ding, J. G., Zhou, Y., Chen, W., Wang, X. F., Zhang, W. W., Du, W. J., Ruan, Z. W. & Hong, L. (2019). Clinical efficacy of lopinavir/ritonavir in the treatment of Coronavirus disease 2019. European Review for Medical and Pharmacological Sciences, 24(6).
Young, B.E., Ong, S.W.X., Kalimuddin, S., Low, J. G., Tan, S. Y., Loh, J., Ng, O.T., Marimuthu, K., Ang, L.W., Mak, T.M., Lau, S.K., Anderson, D.E., Chan, K. S., Tan, T.Y., Ng, T.Y., Cui, L., Said, Z., Kurupatham, L., Chen, M.I.C. & Chan, M. (2020). Epidemiologic Features and Clinical Course of Patients Infected With SARS-CoV-2 in Singapore. JAMA, 323(15), 1488.
Zhang, X.W. & Yap, Y. L. (2004). Old drugs as lead compounds for a new disease? Binding analysis of SARS coronavirus main proteinase with HIV, psychotic and parasite drugs. Bioorganic & Medicinal Chemistry, 12(10), 2517–2521.
Zhai, P., Ding, Y., Wu, X., Long, J., Zhong, Y. & Li, Y. (2020). The epidemiology, diagnosis and treatment of COVID-19. International Journal of Antimicrobial Agents, 55(5), 105955.
Zhou, F., Yu, T., Du, R., Fan, G., Liu, Y., Liu, Z., Xiang, J., Wang, Y., Song, B., Gu, X., Guan, L., Wei, Y., Li, H., Wu, X., Xu, J., Tu, S., Zhang, Y., Chen, H. & Cao, B. (2020). Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. The Lancet, 395(10229), 1054–1062.
Zhu, N., Zhang, D., Wang, W., Li, X., Yang, B., Song, J., Zhao, X., Huang, B., Shi, W., Lu, R., Niu, P., Zhan, F., Ma, X., Wang, D., Xu, W., Wu, G., Gao, G. F. & Tan, W. (2020). A Novel Coronavirus from Patients with Pneumonia in China, 2019. New England Journal of Medicine, 382(8), 727–733.
Zhu, Z., Lu, Z., Xu, T., Chen, C., Yang, G., Zha, T., Lu, J. & Xue, Y. (2020). Arbidol monotherapy is superior to lopinavir/ritonavir in treating COVID-19. Journal of Infection, 81(1), e21–e23.
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2021 Eduarda Luiza Maciel da Silva; Guilherme Vinício de Sousa Silva; Graciela Soares Fonseca; Cesar Andres Diaz Arias
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Autores que publicam nesta revista concordam com os seguintes termos:
1) Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
2) Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
3) Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado.