Aspectos nutricionais e tecnológicos de óleos vegetais com predominãncia de triacilglicerois de cadeia média: Uma revisão
DOI:
https://doi.org/10.33448/rsd-v10i7.16667Palavras-chave:
Obesidade; Óleo de coco; Óleo de palmiste; Óleo de babaçu; Ácido graxo de cadeia média.Resumo
A natureza do ácido graxo presente em cada tipo de óleo vegetal, irá determinar a característica desse óleo. O objetivo do estudo foi descrever o mecanismo de absorção dos ácidos graxos de cadeia média presentes em óleos vegetais e seus benefícios ao organismo humano, aliado aos benefícios tecnológicos no preparo de formulações alimentícias. Destacando como a fonte da matéria-prima e o método de extração interferem na concentração dos ácidos graxos presentes nos óleos. Trata-se de uma revisão de literatura narrativa, que utilizou como referencial teórico artigos científicos recentes na língua inglesa. Óleos derivados do coco, palmiste e babaçu por exemplo, apresentam característica de sólido ou semissólido em temperatura ambiente. Isso acontece devido à presença predominante de ácidos graxos saturados com cadeias carbônicas de comprimento médio, ou seja, de 6 a 12 carbonos. Os ácidos graxos de cadeia média apresentam características distintas dos outros ácidos graxos saturados de cadeia longa, são rapidamente digeridos pelo organismo o que favorece a absorção e utilização desses nutrientes, exercendo impacto no controle de doenças como obesidade, diabetes e hipertensão. Além disso, devido a sua estrutura química os ácidos graxos de cadeia média podem ser utilizados na indústria de alimentos como substituto de gordura animal, aliando seus benefícios nutricionais aos benefícios tecnológicos, sendo empregado em preparações alimentícias para conferir textura, sabor, estabilizar emulsões e melhorar as características reológicas do produto.
Referências
Ali, A. H., Wei, W., & Wang, X. (2020). Characterisation of bovine and buffalo anhydrous milk fat fractions along with infant formulas fat: Application of differential scanning calorimetry, Fourier transform infrared spectroscopy, and colour attributes. LWT, 129,109542. https://doi.org/10.1016/j.lwt.2020.109542
Ariyaprakai, S., Limpachoti, T., & Pradipasena, P. (2013). Interfacial and emulsifying properties of sucrose ester in coconut milk emulsions in comparison with Tween. Food Hydrocolloids, 30(1), 358–367. https://doi.org/10.1016/j.foodhyd.2012.06.003
Assunção, M. L., Ferreira, H. S., Dos Santos, A. F., Cabral, C. R., & Florêncio, T. M. M. T. (2009). Effects of dietary coconut oil on the biochemical and anthropometric profiles of women presenting abdominal obesity. Lipids, 44(7), 593–601. https://doi.org/10.1007/s11745-009-3306-6
Austin, G., Ferguson, J. J., Thota, R. N., Singh, H., Burrows, T., & Garg, M. L. (2020). Postprandial lipaemia following consumption of a meal enriched with medium chain saturated and/or long chain omega-3 polyunsaturated fatty acids. A randomised cross-over study. Clinical Nutrition, July, 1–8. https://doi.org/10.1016/j.clnu.2020.06.027
Bhatnagar, A. S., Prasanth Kumar, P. K., Hemavathy, J., & Gopala Krishna, A. G. (2009). Fatty acid composition, oxidative stability, and radical scavenging activity of vegetable oil blends with coconut oil. JAOCS, Journal of the American Oil Chemists’ Society, 86(10), 991–999. https://doi.org/10.1007/s11746-009-1435-y
Chatterjee, P., Fernando, M., Fernando, B., Dias, C. B., Shah, T., Silva, R., Williams, S., Pedrini, S., Hillebrandt, H., Goozee, K., Barin, E., Sohrabi, H. R., Garg, M., Cunnane, S., & Martins, R. N. (2020). Potential of coconut oil and medium chain triglycerides in the prevention and treatment of Alzheimer’s disease. Mechanisms of Ageing and Development, 186, 111209. https://doi.org/10.1016/j.mad.2020.111209
Cheng, J., Dudu, O. E., Wang, D., Li, X., & Yan, T. (2020). Influence of interfacial adsorption of glyceryl monostearate and proteins on fat crystallization behavior and stability of whipped-frozen emulsions. Food Chemistry, 310, 125949. https://doi.org/10.1016/j.foodchem.2019.125949
Costa, W. A. da, Bezerra, F. W. F., Oliveira, M. S. de, Andrade, E. H. de A., Santos, A. P. M. dos, Cunha, V. M. B., Santos, D. C. S. dos Banna, D. A. D. da S., Teixeira, E., & Carvalho Junior, R. N. de. (2019). Supercritical CO 2 extraction and transesterification of the residual oil from industrial palm kernel cake with supercritical methanol. Journal of Supercritical Fluids, 147, 179–187. https://doi.org/10.1016/j.supflu.2018.10.012
D’Anton Reipert, É. C., Rodrigues, C. E. C., & Meirelles, A. J. A. (2011). Phase equilibria study of systems composed of refined babassu oil, lauric acid, ethanol, and water at 303.2 K. Journal of Chemical Thermodynamics, 43(12), 1784–1790. https://doi.org/10.1016/j.jct.2011.05.039
De Moura, R. F., Cambri, L. T., De Quadros, A. C., Nascimento, C. M. C., Arantes, L. M., Sebastião, E., Tanaka, K., Papini, C. B., Oliani, M. M., Mota, C. S. D. A., Ribeiro, C., & Melo, M. A. R. (2008). Capacidade aeróbia de ratos alimentados com dieta rica em frutose. Revista Brasileira de Medicina Do Esporte, 14(5), 422–426. https://doi.org/10.1590/S1517-86922008000500004
de Oliveira, N. A., dos Santos Garcia, A. B., Mazalli, M. R., Fukumasu, H., & de Oliveira, A. L. (2019). Babassu almonds oil extracted with alternative pressurized green solvents, its triacylglycerol prediction and β-sitosterol composition. Journal of Food Process Engineering, 42(5), 1–9. https://doi.org/10.1111/jfpe.13139
De Pinho, A. P. S., & Souza, A. F. (2018). Extração e caracterização do óleo de coco (Cocos nucifera L.). Biológicas & Saúde, 8(26), 9–18. https://doi.org/10.25242/886882620181241
Dhamodharan, P., & Bakthavatsalam, A. K. (2020). Experimental investigation on thermophysical properties of coconut oil and lauryl alcohol for energy recovery from cold condensate. Journal of Energy Storage, 31(May), 101639. https://doi.org/10.1016/j.est.2020.101639
Famurewa, A. C., Ufebe, O. G., Egedigwe, C. A., Nwankwo, O. E., & Obaje, G. S. (2017). Virgin coconut oil supplementation attenuates acute chemotherapy hepatotoxicity induced by anticancer drug methotrexate via inhibition of oxidative stress in rats. Biomedicine and Pharmacotherapy,87, 437–442. https://doi.org/10.1016/j.biopha.2016.12.123
Ferrari, R. A., & Soler, M. P. (2015). Obtention and characterization of coconut babassu derivatives. Scientia Agricola, 72(4), 291–296. https://doi.org/10.1590/0103-9016-2014-0278
Ferreira, J. A., Santos, J. M., Breitkreitz, M. C., Ferreira, J. M. S., Lins, P. M. P., Farias, S. C., de Morais, D. R., Eberlin, M. N., & Bottoli, C. B. G. (2019). Characterization of the lipid profile from coconut (Cocos nucifera L.) oil of different varieties by electrospray ionization mass spectrometry associated with principal component analysis and independent component analysis. Food Research International, 123(October 2018), 189–197. https://doi.org/10.1016/j.foodres.2019.04.052
Goibier, L., Pillement, C., Monteil, J., Faure, C., & Leal-Calderon, F. (2020). Preparation of multiple water-in-oil-in-water emulsions without any added oil-soluble surfactant. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 590(January), 124492. https://doi.org/10.1016/j.colsurfa.2020.124492
Guimarães, D. E. D., Sardinha, F. L. de C., Mizurini, D. de M., & Carmo, M. das G. T. do. (2007). Adipocitocinas: uma nova visão do tecido adiposo. Revista de Nutrição, 20(5), 549–559. https://doi.org/10.1590/s1415-52732007000500010
Gulão, S., Junior, C., Souza, F. De, Ribeiro, A., Helena, M., & Garcia-rojas, E. E. (2018). Stability and rheological behavior of coconut oil-in-water emulsions formed by biopolymers. Polímeros, 28(5), 413-421. https://doi.org/10.1590/0104-1428.08017
Heil, C. S., Wehrheim, S. S., Paithankar, K. S., & Grininger, M. (2019). Fatty Acid Biosynthesis: Chain-Length Regulation and Control. ChemBioChem, 20(18), 2298–2321. https://doi.org/10.1002/cbic.201800809
Hollis, F., Mitchell, E. S., Canto, C., Wang, D., & Sandi, C. (2018). Medium chain triglyceride diet reduces anxiety-like behaviors and enhances social competitiveness in rats. Neuropharmacology, 138, 245–256. https://doi.org/10.1016/j.neuropharm.2018.06.017
Ishizawa, R., Masuda, K., Sakata, S., & Nakatani, A. (2015). Effects of different fatty acid chain lengths on fatty acid oxidation-related protein expression levels in rat skeletal muscles. Journal of Oleo Science, 64(4), 415–421. https://doi.org/10.5650/jos.ess14199
Jackson, K. G., Poppitt, S. D., & Minihane, A. M. (2012). Postprandial lipemia and cardiovascular disease risk: Interrelationships between dietary, physiological and genetic determinants. Atherosclerosis, 220(1), 22–33. https://doi.org/10.1016/j.atherosclerosis.2011.08.012
Jeyarani, T., Imtiyaj Khan, M., & Khatoon, S. (2009). Trans-free plastic shortenings from coconut stearin and palm stearin blends. Food Chemistry, 114(1), 270–275. https://doi.org/10.1016/j.foodchem.2008.09.052
Kılıç, B., & Özer, C. O. (2019). Potential use of interesterified palm kernel oil to replace animal fat in frankfurters. Meat Science, 148), 206–212. https://doi.org/10.1016/j.meatsci.2018.08.024
Kumar, P. K. P., & Krishna, A. G. G. (2015). Physicochemical characteristics of commercial coconut oils produced in India. Grasas y Aceites, 66(1). https://doi.org/10.3989/gya.0228141
Lee, A., Yoo, H. J., Kim, M., Kim, M., Choi, J. H., Lee, C., & Lee, J. H. (2019). Effects of equivalent medium-chain diacylglycerol or long-chain triacylglycerol oil intake via muffins on postprandial triglycerides and plasma fatty acids levels. Journal of Functional Foods, 53, 299–305. https://doi.org/10.1016/j.jff.2018.12.021
Legrand, P., & Rioux, V. (2015). Specific roles of saturated fatty acids: Beyond epidemiological data. European Journal of Lipid Science and Technology, 117(10), 1489–1499. https://doi.org/10.1002/ejlt.201400514
Lu, H., Guo, T., Fan, Y., Deng, Z., Luo, T., & Li, H. (2020). Effects of diacylglycerol and triacylglycerol from peanut oil and coconut oil on lipid metabolism in mice. Journal of Food Science, 85(6), 1907–1914. https://doi.org/10.1111/1750-3841.15159
Lu, M., Zhang, T., Jiang, Z., Guo, Y., Qiu, F., Liu, R., Zhang, L., Chang, M., Liu, R., Jin, Q., & Wang, X. (2020). Physical properties and cellular antioxidant activity of vegetable oil emulsions with different chain lengths and saturation of triglycerides. LWTt, 121, 108948. https://doi.org/10.1016/j.lwt.2019.108948
Lu, X., Chen, J., Zheng, M., Guo, J., Qi, J., Chen, Y., Miao, S., & Zheng, B. (2019a). Effect of high-intensity ultrasound irradiation on the stability and structural features of coconut-grain milk composite systems utilizing maize kernels and starch with different amylose contents. Ultrasonics Sonochemistry, 55(February), 135–148. https://doi.org/10.1016/j.ultsonch.2019.03.003
Lu, X., Su, H., Guo, J., Tu, J., Lei, Y., Zeng, S., Chen, Y., Miao, S., & Zheng, B. (2019b). Rheological properties and structural features of coconut milk emulsions stabilized with maize kernels and starch. Food Hydrocolloids, 96(May), 385–395. https://doi.org/10.1016/j.foodhyd.2019.05.027
Marina, A. M., Che Man, Y. B., Nazimah, S. A. H., & Amin, I. (2009). Chemical properties of virgin coconut oil. JAOCS, Journal of the American Oil Chemists’ Society, 86(4), 301–307. https://doi.org/10.1007/s11746-009-1351-1
Matsuura, T., Ogawa, A., Tomabechi, M., Matsushita, R., Gohtani, S., Neoh, T. L., & Yoshii, H. (2015). Effect of dextrose equivalent of maltodextrin on the stability of emulsified coconut-oil in spray-dried powder. Journal of Food Engineering, 163, 54–59. https://doi.org/10.1016/j.jfoodeng.2015.04.018
Montgomery, M. K., Osborne, B., Brandon, A. E., O’Reilly, L., Fiveash, C. E., Brown, S. H. J., Wilkins, B. P., Samsudeen, A., Yu, J., Devanapalli, B., Hertzog, A., Tolun, A. A., Kavanagh, T., Cooper, A. A., Mitchell, T. W., Biden, T. J., Smith, N. J., Cooney, G. J., & Turner, N. (2019). Regulation of mitochondrial metabolism in murine skeletal muscle by the medium-chain fatty acid receptor Gpr84. FASEB Journal, 33(11), 12264–12276. https://doi.org/10.1096/fj.201900234
Narayanankutty, A., Palliyil, D. M., Kuruvilla, K., & Raghavamenon, A. C. (2018). Virgin coconut oil reverses hepatic steatosis by restoring redox homeostasis and lipid metabolism in male Wistar rats. Journal of the Science of Food and Agriculture, 98(5), 1757–1764. https://doi.org/10.1002/jsfa.8650
Neves, M. I. L., Queirós, M. de S., Viriato, R. L. S., Ribeiro, A. P. B., & Gigante, M. L. (2020). Physicochemical characteristics of anhydrous milk fat mixed with fully hydrogenated soybean oil. Food Research International, 132(January), 109038. https://doi.org/10.1016/j.foodres.2020.109038
Ng, S. P., Lai, O. M., Abas, F., Lim, H. K., & Tan, C. P. (2014). Stability of a concentrated oil-in-water emulsion model prepared using palm olein-based diacylglycerol/virgin coconut oil blends: Effects of the rheological properties, droplet size distribution and microstructure. Food Research International, 64, 919–930. https://doi.org/10.1016/j.foodres.2014.08.045
Nguyen, V., Rimaux, T., Truong, V., Dewettinck, K., & Van Bockstaele, F. (2021). The effect of cooling on crystallization and physico-chemical properties of puff pastry shortening made of palm oil and anhydrous milk fat blends. Journal of Food Engineering, 291(May 2020), 110245. https://doi.org/10.1016/j.jfoodeng.2020.110245
Nik Norulaini, N. A., Setianto, W. B., Zaidul, I. S. M., Nawi, A. H., Azizi, C. Y. M., & Omar, A. K. M. (2009). Effects of supercritical carbon dioxide extraction parameters on virgin coconut oil yield and medium-chain triglyceride content. Food Chemistry, 116(1), 193–197. https://doi.org/10.1016/j.foodchem.2009.02.030
Norizzah, A. R., Nur Azimah, K., & Zaliha, O. (2018). Influence of enzymatic and chemical interesterification on crystallisation properties of refined, bleached and deodourised (RBD) palm oil and RBD palm kernel oil blends. Food Research International, 106(September 2017), 982–991. https://doi.org/10.1016/j.foodres.2018.02.001
Nosaka, N., Tsujino, S., Honda, K., Suemitsu, H., & Kato, K. (2020). Enhancement of Fat Oxidation during Submaximal Exercise in Sedentary Persons: Variations by Medium-Chain Fatty Acid Composition and Age Group. Lipids, 55(2), 173–183. https://doi.org/10.1002/lipd.12222
Patil, U., & Benjakul, S. (2017). Characteristics of albumin and globulin from coconut meat and their role in emulsion stability without and with proteolysis. Food Hydrocolloids, 69, 220–228. https://doi.org/10.1016/j.foodhyd.2017.02.006
Quitete, F. T., de Moura, E. G., Atella, G. C., Lisboa, P. C., & de Oliveira, E. (2019). Differential effects in male adult rats of lifelong coconut oil exposure versus during early-life only. Journal of Functional Foods, 55(February), 17–27. https://doi.org/10.1016/j.jff.2019.02.020
Ramisetty, K. A., Pandit, A. B., & Gogate, P. R. (2015). Ultrasound assisted preparation of emulsion of coconut oil in water: Understanding the effect of operating parameters and comparison of reactor designs. Chemical Engineering and Processing: Process Intensification, 88, 70–77. https://doi.org/10.1016/j.cep.2014.12.006
Ratnayake, W. S., Hoover, R., Shahidi, F., Perera, C., & Jane, J. (2001). Composition, molecular structure, and physicochemical properties of starches from four field pea (Pisum sativum L.) cultivars. Food Chemistry, 74(2), 189–202. https://doi.org/10.1016/S0308-8146(01)00124-8
Rennó, F. P., De Freitas Júnior, J. E., Gandra, J. R., Verdurico, L. C., Dos Santos, M. V., Barletta, R. V., Venturelli, B. C., & Vilela, F. G. (2013). Fatty acid profile and composition of milk protein fraction in dairy cows fed long-chain unsaturated fatty acids during the transition period. Revista Brasileira de Zootecnia, 42(11), 813–823. https://doi.org/10.1590/S1516-35982013001100008
Rial, S. A., Jutras-Carignan, A., Bergeron, K. F., & Mounier, C. (2020). A high-fat diet enriched in medium chain triglycerides triggers hepatic thermogenesis and improves metabolic health in lean and obese mice. Biochimica et Biophysica Acta - Molecular and Cell Biology of Lipids, 1865(3), 158582. https://doi.org/10.1016/j.bbalip.2019.158582
Rodrigues-Ract, J. N., Cotting, L. N., Poltronieri, T. P., da Silva, R. C., & Gioielli, L. A. (2010). Comportamento de cristalização de lipídios estruturados obtidos a partir de gordura do leite e óleo de girasol. Ciencia e Tecnologia de Alimentos, 30(1), 258–267. https://doi.org/10.1590/s0101-20612010000100038
Ronis, M. J. J., Baumgardner, J. N., Sharma, N., Vantrease, J., Ferguson, M., Tong, Y., Wu, X., Cleves, M. A., & Badger, T. M. (2013). Medium chain triglycerides dose-dependently prevent liver pathology in a rat model of non-alcoholic fatty liver disease. Experimental Biology and Medicine, 238(2), 151–162. https://doi.org/10.1258/ebm.2012.012303
Sant’Anna Ramos Vosgerau, D., & Paulin Romanowski, J. (2014). Estudos de revisão: implicações conceituais e metodológicas. Revista Diálogo Educacional, 14(41), 165. https://doi.org/10.7213/dialogo.educ.14.041.ds08
Santos, D. S., Da Silva, I. G., Araújo, B. Q., Júnior, C. A. L., Monção, N. B. N., Citó, A. M. D. G. L., De Souza, M. H. S. L., Nascimento, M. D. D. S. B., & Costa, M. C. P. (2013). Extraction and evaluation of fatty acid compositon of orbignya phalerata martius oils (Arecaceae) from Maranhão state, Brazil. Journal of the Brazilian Chemical Society, 24(2), 355–362. https://doi.org/10.5935/0103-5053.20130045
Saricaoglu, F. T., Gul, O., Besir, A., & Atalar, I. (2018). Effect of high pressure homogenization (HPH) on functional and rheological properties of hazelnut meal proteins obtained from hazelnut oil industry by-products. Journal of Food Engineering, 233, 98–108. https://doi.org/10.1016/j.jfoodeng.2018.04.003
Soares, B. M. C., Gamarra, F. M. C., Paviani, L. C., Gonçalves, L. A. G., & Cabral, F. A. (2007). Solubility of triacylglycerols in supercritical carbon dioxide. Journal of Supercritical Fluids, 43(1), 25–31. https://doi.org/10.1016/j.supflu.2007.03.013
Srivastava, Y., Semwal, A. D., & Majumdar, A. (2016). Quantitative and qualitative analysis of bioactive components present in virgin coconut oil. Cogent Food & Agriculture, 2(1) (1164929), 1-13. https://doi.org/10.1080/23311932.2016.1164929
Ströher, D. J., De Oliveira, M. F., Martinez-Oliveira, P., Pilar, B. C., Cattelan, M. D. P., Rodrigues, E., Bertolin, K., Gonçalves, P. B. D., Piccoli, J. D. C. E., & Manfredini, V. (2020). Virgin Coconut Oil Associated with High-Fat Diet Induces Metabolic Dysfunctions, Adipose Inflammation, and Hepatic Lipid Accumulation. Journal of Medicinal Food, 23(7), 689–698. https://doi.org/10.1089/jmf.2019.0172
Szafrańska, J. O., Muszyński, S., & Sołowiej, B. G. (2020). Effect of whey protein concentrate on physicochemical properties of acid casein processed cheese sauces obtained with coconut oil or anhydrous milk fat. LWT, 127, 109434 https://doi.org/10.1016/j.lwt.2020.109434
Thevenet, J., De Marchi, U., Domingo, J. S., Christinat, N., Bultot, L., Lefebvre, G., Sakamoto, K., Descombes, P., Masoodi, M., & Wiederkehr, A. (2016). Medium-chain fatty acids inhibit mitochondrial metabolism in astrocytes promoting astrocyte-neuron lactate and ketone body shuttle systems. FASEB Journal, 30(5), 1913–1926. https://doi.org/10.1096/fj.201500182
Thomas, D. D., Stockman, M. C., Yu, L., Meshulam, T., McCarthy, A. C., Ionson, A., Burritt, N., Deeney, J., Cabral, H., Corkey, B., Istfan, N., & Apovian, C. M. (2019). Effects of medium chain triglycerides supplementation on insulin sensitivity and beta cell function: A feasibility study. PLoS ONE, 14(12), 1–16. https://doi.org/10.1371/journal.pone.0226200
Tucci, S., Behringer, S., & Spiekerkoetter, U. (2015). De novo fatty acid biosynthesis and elongation in very long-chain acyl-CoA dehydrogenase-deficient mice supplemented with odd or even medium-chain fatty acids. FEBS Journal, 282(21), 4242–4253. https://doi.org/10.1111/febs.13418
Turner, N., Hariharan, K., TidAng, J., Frangioudakis, G., Beale, S. M., Wright, L. E., Zeng, X. Y., Leslie, S. J., Li, J. Y., Kraegen, E. W., Cooney, G. J., & Ye, J. M. (2009). Enhancement of muscle mitochondrial oxidative capacity and alterations in insulin action are lipid species dependent: Potent tissue-specific effects of medium-chain fatty acids. Diabetes, 58(11), 2547–2554. https://doi.org/10.2337/db09-0784
Wang, B., Li, L., Fu, J., Yu, P., Gong, D., Zeng, C., & Zeng, Z. (2016). Effects of Long-Chain and Medium-Chain Fatty Acids on Apoptosis and Oxidative Stress in Human Liver Cells with Steatosis. Journal of Food Science, 81(3), H794–H800. https://doi.org/10.1111/1750-3841.13210
Yoshihara, H. A. I., Bastiaansen, J. A. M., Karlsson, M., Lerche, M. H., Comment, A., & Schwitter, J. (2020). Detection of myocardial medium-chain fatty acid oxidation and tricarboxylic acid cycle activity with hyperpolarized [1–13C]octanoate. NMR in Biomedicine, 33(3), 1–8. https://doi.org/10.1002/nbm.4243
Yuhas, R., Pramuk, K., & Lien, E. L. (2006). Human milk fatty acid composition from nine countries varies most in DHA. Lipids, 41(9), 851–858. https://doi.org/10.1007/s11745-006-5040-7
Yulianingsih, R., & Gohtani, S. (2020). The influence of stirring speed and type of oil on the performance of pregelatinized waxy rice starch emulsifier in stabilizing oil-in-water emulsions. Journal of Food Engineering, 280(January), 109920. https://doi.org/10.1016/j.jfoodeng.2020.109920
Zhou, S., Wang, Y., Jiang, Y., Zhang, Z., Sun, X., & Yu, L. L. (2017). Dietary Intake of Structured Lipids with Different Contents of Medium-Chain Fatty Acids on Obesity Prevention in C57BL/6J Mice. Journal of Food Science, 82(8), 1968–1977. https://doi.org/10.1111/1750-3841.13789
Zicker, M. C., Silveira, A. L. M., Lacerda, D. R., Rodrigues, D. F., Oliveira, C. T., de Souza Cordeiro, L. M., Lima, L. C. F., Santos, S. H. S., Teixeira, M. M., & Ferreira, A. V. M. (2019). Virgin coconut oil is effective to treat metabolic and inflammatory dysfunction induced by high refined carbohydrate-containing diet in mice. In Journal of Nutritional Biochemistry (Vol. 63). https://doi.org/10.1016/j.jnutbio.2018.08.013
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2021 Raquel Reis Lima; Elisângela Ramieres Gomes; Rodrigo Stephani; Ítalo Tuler Perrone; Antônio Fernandes de Carvalho; Luiz Fernando Cappa de Oliveira
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Autores que publicam nesta revista concordam com os seguintes termos:
1) Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
2) Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
3) Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado.