Desenvolvimento e uso de vacinas mucosas: Potencial e limitações
DOI:
https://doi.org/10.33448/rsd-v10i7.16732Palavras-chave:
sistemas de entrega; imunomoduladores; vias de administração; vacinas.; Sistemas de entrega; Imunomoduladores; Vias de administração; Vacinas.Resumo
As superfícies mucosas representam uma importante porta de entrada para microrganismos que podem ser prejudiciais à saúde. A resposta imune humoral tem uma importante ação na defesa dessas superfícies, pois é capaz de prevenir a entrada de patógenos no organismo. Vacinas com aplicação local têm sido utilizadas com o objetivo de estimular uma resposta imune eficiente nas mucosas, uma vez que as vacinas convencionais, para aplicação parenteral, tendem a estimular uma resposta predominantemente sistêmica. Vacinas que utilizam a mucosa como via de inoculação são capazes de gerar uma resposta imune diretamente na mucosa de aplicação e mucosa correspondente, uma vez que o sistema mucoso é integrado, o que representa uma vantagem importante na escolha da via de inoculação. Este artigo tem como objetivo ilustrar alguns conceitos relacionados à imunidade mucosa em geral, bem como reunir informações sobre o que tem sido estudado em relação às vias de administração de vacinas nas mucosas, imunomoduladores e sistemas de liberação de antígenos.
Referências
Aguilar, J. C.; Rodríguez, E. G. (2007). Vaccine adjuvants revisited. Vaccine, 25, 3752–62.
Ansel, H. C.; Popovich, N. G. & Allen, Jr L.V. (2000). Pharmacotechnics: pharmaceutical forms and drug delivery systems. São Paulo: Premier.
Bernasconi, V.; Norling, K.; Bally, M.; Höök, F. & Lycke, N. Y. (2016). Mucosal Vaccine Development Based on Liposome Technology. J Immunol Res, 1-16.
Bobbala, S.; Gibson, B.; Gamble, A. B.; McDowell, A. & Hook, S. (2018). Poloxamer 407-chitosan grafted thermoresponsive hydrogels achieve synchronous and sustained release of antigen and adjuvant from single shot vaccines. Immunology and Cell Biology, 96, 6, 656–665.
Brandtzaeg, P.; Johansen, F. E. (2005). Mucosal B cells: phenotypic characteristics, transcriptional regulation, and homing properties. Immunol Rev. 206, 32–63.
Brandtzaeg, P. (2007). Induction of secretory immunity and memory at mucosal surfaces. Vaccine, 25, 5467-84.
Campbell, D. J.; Debes, G. F.; Johnston, B.; Wilson, E. & Butcher, E. C. (2003). Targeting T cell responses by selective chemokine receptor expression. Semin Immunol, 15, 277-86.
Cazote, A. S. (2018). Characterization of human lymphocytes in the HIV / TB association: result in the immunopathogenesis of extrapulmonary tuberculosis in its ganglionic form. [Dissertation]. Programa de Pós-Graduação em Medicina Tropical: Fundação Oswaldo Cruz.
Cruvinel, W. M.; Mesquita, Jr D.; Araújo, J. A. R.; Catelan, T. T. T., Souza, A.W.S. & Silva, N. P. (2010). Innate immunity fundamentals with emphasis on the molecular and cellular mechanisms of the inflammatory response. Rev Bras Reumatol, 50, 434-61.
Cruz, R. H. (2018). Interaction between specific antibodies and dendritic cells in asthmatic patients. [Dissertation]. Programa de Pós Graduação em Imunologia: Universidade de São Paulo.
Di Tommaso, A.; Pizza, M.; Rappuoli, R.; Abrignani, S.; Douce, G. & De Magistris, M. T. (1996). Induction of antigen-specific antibodies in vaginal secretions by using a nontoxic mutant of heat-labile enterotoxin as a mucosal adjuvant. Infect Immun, 64, 974–79.
Erume, J. & Partidos, C. D. (2011). Evaluation of the LTK63 adjuvant effect on cellular immune responses to measles virus nucleoprotein. Afr Health Sci, 11, 151-57.
Gomes, R. C. (2018). Age influence on the immune response of calves to intranasal vaccination. [Tesis]. Universidade de São Paulo.
Hagiwara, Y.; Iwasaki, T.; Asanuma, H.; Sato, Y.; Sata, T. & Aizawa, C. (2001). Effects of intranasal administration of cholera toxin (or Escherichia coli heat-labile enterotoxin) B subunits supplemented with a trace amount of the holotoxin on the brain. Vaccine, 19, 1652–60.
Holmgren, J.; Czerkinsky, C.; Eriksson, K. & Mharandi, A. (2003). Mucosal immunisation and adjuvants: a brief overview of recent advances and challenges. Vaccine, 21, 89-95.
Farias, T. V.; Pala, G.; De Moraes, A. C.; Prado, E. J. R.; Kotzent, S. & Da Costa, J. C. (2016). Immune response of the cutaneous mucosa of Pacus (Piaractus mesopotamicus) vaccinated intraperitoneally and by immersion against aeromoniosis. Rev Ciên Vet Saúde Públ, 3, 286-88.
He, B.; Xu, W.; Santini, P. A; Polydorides, A. D.; Chiu, A. & Estrella, J. (2007). Intestinal bacteria trigger T cell independent immunoglobulin A2 class switching by inducing epithelial-cell secretion of the cytokine Immunity, 26, 812–26.
John, D. C. & Elizabeth, B. N. (2018). The Mucosal Vaccine Adjuvant LT(R192G/L211A) or dmLT. mSphere, 25: 215-18.
Júnior, D. M.; Araújo, J. A. R.; Catelan, T. T. T.; Souza, A. W. S.; Cruvinel, W. M. & Andrade L.E.C. (2010). Immune System - Part II Fundamentals of T and B lymphocyte-mediated immune response. Rev Bras Reumatol, 50, 552-80.
Kraan, H.; Peter, S.; Amorij, J. P. & Kersten, G. (2017). Intranasal and sublingual delivery of inactivated polio vaccine. Vaccine, 35, 2647-53.
Kurashima, Y. & Kiyono, H. (2017). Mucosal Ecological Network of Epithelium and Immune Cells for Gut Homeostasis and Tissue Healing. Annu Rev Immunol, 35, 119–47.
Kim, M.; Yi, E.; Kim, Y.; Kim, S. H.; Jung, Y. S. & Kim, S. R. (2019). ERdj5 in innate immune cells is a crucial factor for the mucosal adjuvanticity of cholera toxin. Front Immunol, 10, 1-11.
Leung, S. T; Derecka, K.; Mann, G. E.; Flint, A. P. F. & Wathes, D. C. (2000). Uterine lymphocyte distribution and interleukin expression during early pregnancy in cows. J Reprod Fertil, 119, 25-33.
Lycke, N. (2012). Recent progress in mucosal vaccine development: potential and limitations. Nat Rev Immunol, 12, 592-605.
Ma, Y. (2016). Recent Advances in Nontoxic Escherichia coli Heatlabile Toxin and Its Derivative Adjuvants. Expert Rev Vaccines, 15, 1361-71.
Macpherson, A. J; Mckoy, K. D; Johansen, F. E. & Brandtzaeg, P. (2008). The immune geography of IgA induction and function. Mucosal Immunol, 1, 11–22.
Macpherson, J. A.; Yilmaz, B.; Limenitakis, J. P. & Ganal-Vonarburg, S. G. (2018). IgA Function in Relation to the Intestinal Microbiota. Annu Rev Immunol, 36, 359–81.
McGill, J. L.; Kelly, S. M.; Kumar, P.; Speckhart, S.; Haughney, S. L. & Henningson, J. (2018). Efficacy of mucosal polyanhydride nanovaccine against respiratory syncytial virus infection in the neonatal calf. Scientific Reports, 3021, 1-15.
Morrison, L. A.; Da Costa, X. J. & Knipe, D. M. (1998). Influence of mucosal and parenteral immunization with a replication-defective mutant of HSV-2 on immune responses and protection from genital challenge. Virology, 2430, 178–87.
Murphy, K. (2014).Immunology of Janeway. 8th ed. São Paulo: Artmed.
Neutra, M. R. & Kozlowski, P. A. (2006). Mucosal vaccines: the promise and the challenge. Nat Rev Immunol; v. (6), 148–58.
Palma, C.; Iona, E.; Giannoni, F.; Pardini, M.; Brunori, L. & Farttorini, L. (2008). The LTK63 adjuvant improves protection conferred by Ag85B DNA-protein prime-boosting vaccination against Mycobacterium tuberculosis infection by dampening IFN-γ response. Vaccine, 26, 4237-4243.
Pakkanen, S. H.; Kantele, J. M.; Moldoveanu, Z.; Hedges, S.; Häkkinen, M. & Mestecky, J. (2010). Expression of homing receptors on IgA1 and IgA2 plasma blasts in blood reflects differential distribution of IgA1 and IgA2 in various body fluids. Clin Vaccine Immunol, 17, 393–401.
Parr, E. L.; Parr, M. B. (1999). Immune responses and protection against vaginal infection after nasal or vaginal immunization with attenuated Herpes simplex virus type-2. Immunology, 98, 639–45.
Park, A.; Hong, P.; Won, S. T.; Thibault, P. A.; Vigant, F. & Oguntuyo, K. Y. (2016). Sendai virus, an RNA virus with no risk of genomic integration, delivers CRISPR/Cas9 for efficient gene editing. Mol Ther Methods Clin Dev, 3.
Pavot, V.; Rochereau, N.; Genin, C.; Verrier, B. & Paul, S. (2012). New insights in mucosal vaccine development. Vaccine, 30, 142– 154.
Reichen, C.; Dezen, D.; Meneguzzi, M. & Kich, J. D. (2019); Use of flow cytometry for the evaluation of phagocytosis produced by a mucosal vaccine against Salmonella sp. in swine. Rev Acad Ciênc Anim, 17, 244-245.
Roberts, L. (2004). Polio: The Final Assault? Science, 303, 1960-1968.
Sedgmen, B. J.; Meeusen, E. N. T. & Lofthouse, S. A. (2004). Alternative routes of mucosal immunization in large animals. Immunol Cell Biol, 82, 10–16.
Tempesta, M.; Camero, M.; Bellacicco, A. L.; Tarsitano, E.; Lorusso, A. & Martella, V. (2007). Caprine herpesvirus 1 vaccine with the LTK63 mutant as a mucosal adjuvant induces strong protection against genital infection in goats. Vaccine, 25, 7927–7930.
Terauchi, Y.; Sano, K.; Ainai, A.; Saito, S.; Taga, Y. & Ogawa-Goto, K. (2018). IgA polymerization contributes to efficient virus neutralization on human upper respiratory mucosa after intranasal inactivated influenza vaccine administration. Hum Vaccines Immunother, 14, 1351-1361.
Thiam, F.; Charpilienne, A.; Poncet, D.; Kohli, E. & Basset, C. B. (2015). Subunits of cholera toxin and thermolabile enterotoxin of Escherichia coli have similar adjuvant effect as whole molecules on rotavirus 2/6- VLP specific antibody responses and induce a Th17-like response after intrarectal immunization. Microb Pathog, 89, 27-34.
Tsuruhara, A.; Aso, K.; Tokuhara, D.; Ohori, J.; Kawabata, M. & Kurono, Y. (2017). Rejuvenation of mucosal immunosenescence by adipose tissue-derived mesenchymal stem cells. Int Immunol, 29, 5–10.
Van Egmond, M.; Damen, C. A.; Van Spriel, A. B.; Vidarsson, G.; Van Garderen, E. & Van de Winkel, J. G. (2001). IgA and the IgA Fc receptor. Trends Immunol, 22, 205–211.
Villanova, J. C. O. & Oréfice, R. L. (2010). Pharmaceutical Applications of Polymers. Polymers: Science and Technology, 20, 51-64.
Woof, J. M. & Mestecky, J. (2005). Mucosal immunoglobulins. Immunol Rev, 206, 64–82.
Woof, J. M. & Kerr, M. A. (2006). The function of immunoglobulin A in immunity. J Pathol, 208, 270–82.
Xiong, N.; Yaoyao, F.; Shaomin, H.; Mingcan, X. & Jie, Y. (2012). CCR10 and Its Ligands in Regulation of Epithelial Immunity and Diseases. Protein Cell, 3 (8), 571–580.
Zhao, X.; Coulman, S.A.; Hanna, S. J.; Wong, F. S, Dayan, C. M. & Birchall, J. C. (2017). Formulation of hydrophobic peptides for skin delivery via coated microneedles. J Control Release, 10, 2-13.
Zajac, M. P. D. M; Zanetti, F. A.; Esusy, M. S.; Federico, C. R.; Zabal, O. & Valera, A. R. (2017). Induction of Both Local Immune Response in Mice and Protection in a Rabbit Model by Intranasal Immunization with Modified Vaccinia Ankara Virus Expressing a Secreted Form of Bovine Herpesvirus 1 Glycoprotein D. Viral Immunol, 1-7.
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2021 Cristina Mendes Peter; Lariane da Silva Barcelos; Matheus Iuri Frühauf; Nadálin Yandra Botton; Silvia de Oliveira Hübner; Marcelo de Lima; José Mario Barichello; Geferson Fischer
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Autores que publicam nesta revista concordam com os seguintes termos:
1) Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
2) Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
3) Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado.