Estudos de docagem molecular de dopamina de metabólitos biologicamente ativos de Curcuma longa L.

Autores

DOI:

https://doi.org/10.33448/rsd-v10i7.16992

Palavras-chave:

Estigmasterol; β-sitosterol; Colest-5-en-3-ona; Colestan-3-ol, 2-metileno- (3β, 5α); Receptores de dopamina; Curcuma longa.

Resumo

O sistema dopaminérgico está envolvido em uma ampla gama de doenças neuropsiquiátricas e neurodegenerativas. A falta de especificidade do subtipo de receptor está relacionada a vários efeitos colaterais farmacológicos que são observados durante a terapia entre pacientes parkinsonianos e esquizofrênicos. É de suma importância a busca por novos compostos que atuem nos receptores da dopamina com potencial terapêutico, maior eficácia clínica e menor número de efeitos adversos. No presente estudo, realizamos um estudo de docagem molecular das interações dos receptores D2, D3 e D4 com 92 metabólitos da Curcuma longa usando uma abordagem in silico. Procuramos identificar compostos para possível desenvolvimento de drogas. Uma biblioteca virtual de compostos foi construída a partir de moléculas que foram identificadas na caracterização fitoquímica de C. longa. Os protocolos que foram validados por redocagem e foram aplicados a uma varredura virtual dessa biblioteca usando os programas Autodock-v4.2.3, Autodock Vina e Molegro-v6.0 Virtual Docker, com quatro repetições cada. As estruturas tridimensionais dos receptores D2, D3 e D4 em complexo com risperidona, eticloprida e nemonaprida foram obtidas no Protein Data Bank. Quatro compostos - estigmasterol, β-sitosterol, colest-5-en-3-ona e colestan-3-ol, 2-metileno- (3β, 5α) - foram os mais propensos a se ligar aos receptores de dopamina D2, D3 e D4 , sugerindo seu potencial para possível desenvolvimento de drogas.

Referências

Alexander, G. E. (2004). Biology of Parkinson's disease: pathogenesis and pathophysiology of a multisystem neurodegenerative disorder. Dialogues in clinical neuroscience, 6(3), 259–280. Doi: 10.31887/DCNS.2004.6.3/galexander.

Alfio, S. T., Laudani, S., Contarini, G., Luca, A. D., Geraci, F., Managò, F., Papaleo, F., Salomone, S., Drago, F. & Leggio, G.M. (2020). Dopamine, Cognitive Impairments and Second-Generation Antipsychotics: From Mechanistic Advances to More Personalized Treatments. Pharmaceuticals. 13, 365. Doi: 10.3390/ph13110365.

Araújo, C. A. C. & Leon, L. L. (2001). Biological activities of Curcuma longa L. Memórias do Instituto Oswaldo Cruz. 96(5), 723-728. Doi: 10.1590/S0074-02762001000500026.

Awad, A. B., Chan, K. C., Downie, A. C. & Fink, C. S. (2009). Peanuts as a source of β-sitosterol, a sterol with anticancer properties. Nutrition and Cancer. 36(2), 238-241. Doi: 10.1207/S15327914NC3602_14.

Ayati1, Z., Ramezani, M., Amiri, M.S., Moghadam, A.T., Rahimi, H., Abdollahzade, A., Sahebkar, A. & Emami1, S.A. (2019). Ethnobotany, Phytochemistry and Traditional Uses of Curcuma spp. and Pharmacological Profile of Two Important Species (C. longa and C. zedoaria): A Review. Current Pharmaceutical Design. 25, 871-935. Doi: 10.2174/1381612825666190402163940.

Badgaiyan, R. (2016). Dynamic molecular imaging guides treatment options for attention deficit hyperactive disorder (ADHD). Journal of Nuclear Medicine. 57 (2), 272.

Baskar, A. A., Numair, K. S., Paulraj, G. & Alsaif, M. (2012). Ignacimuthu S. β-sitosterol prevents lipid peroxidation and improves antioxidant status and histoarchitecture in rats with 1,2-dimethylhydrazine-induced colon cancer. Journal of Medicinal Food. 15(4), 335-43. Doi: 10.1089/jmf.2011.1780.

Bastos, D. H. M., Rogero, M. M. & Arêas, J. A. G. (2009). Mecanismos de ação de compostos bioativos dos alimentos no contexto de processos inflamatórios relacionados à obesidade. Arquivos Brasileiros de Endocrinologia & Metabologia. 53(5), 646-656. Doi: 10.1590/S0004-27302009000500017.

Bortolucci, W. C., Trettel, J. R., Bernardi, D. M, Souza, M. M. Q, Lopes, A. D., Lovato, E. C. W, Lívero, F. A. R., Silva, G. J., Magalhães, H. M., Souza, S.G.H., Gazim, Z.C. & Colauto, N.B. (2020). Therapeutic potential of Zingiberaceae in Alzheimer's disease. Boletin Latinoamericano y Del Caribe de Plantas Medicinales y Aromáticas. 19 (5), 428-465. Doi: 10.37360/blacpma.20.19.5.30.

Briggs, A., Wild, D., Lees, M., Reaney, M., Dursun S., Parry, D. & Mukherjee, J. (2008). Impact of schizophrenia and schizophrenia treatment-related adverse events on quality of life: direct utility elicitation. Health and Quality of Life Outcomes. 6, 105. Doi: 10.1186/1477-7525-6-105.

Brisch, R., Saniotis, A., Wolf, R., Bielau, H., Bernstein, H. G., Steiner, J., Bogerts, B., Braun, K., Jankowski, Z., Kumaratilake, J., Henneberg, M. & Gos, T. (2014). The role of dopamine in schizophrenia from a neurobiological and evolutionary perspective: old fashioned, but still in vogue. Frontiers in psychiatry, 5, 47. Doi: 10.3389/fpsyt.2014.00047.

Broft, A., Slifstein, M., Osborne, J., Kothari, P., Morim, S., Shingleton, R., Kenney, L., Vallabhajosula, S., Attia, E., Martinez, D. & Walsh, B. T. (2015). Striatal DA type 2 receptor availability in anorexia nervosa. Psychiatry Research: Neuroimaging. 233(3), 380–387. Doi: 10.1016/j.pscychresns.2015.06.013.

Brunelin, J., Fecteau, S. & Suaud-Chagny, M.F. (2013). Abnormal striatal DA transmission in schizophrenia. Current Medicinal Chemistry. 20(3), 397–404. Doi: 10.2174/0929867311320030011.

Bueschbell, B., Barreto, C., Preto, A. J., Schiedel, A.C. & Moreira, I. S. (2019). A Complete Assessment of DA Receptor- Ligand Interactions through Computational Methods. Molecules (Basel, Switzerland). 24(7), 1196. Doi: 10.3390/molecules24071196.

Chaurasiya, S., Kaur, P., Nayak, S. K. & Khatik, G. L. (2016). Virtual screening for identification of novel potent EGFR inhibitors through AutoDock Vina molecular modeling software. Journal of Chemical and Pharmaceutical Research. 8(4), 353-360.

Conn, K. A., Burne, T. H. J. & Kesby, J. P. (2020). Subcortical DA and Cognition in Schizophrenia: Looking Beyond Psychosis in Preclinical Models. Frontiers in Neuroscience. 14, 542. Doi: 10.3389/fnins.2020.00542. eCollection 2020.

Cuny, G. D. (2012). Neurodegenerative diseases: challenges and opportunities. Future Medicinal Chemistry, 4(13), 1647–1649. Doi: 10.4155/fmc.12.123.

Cunha, C., Wietzikoski, E. C., Bortolanza, M., Dombrowski, P. A., Dos Santos, L. M., Boschen, S. L., Miyoshi, E., Vital, M. A., Boerngen-Lacerda, R. & Andreatini, R. (2009a). Non-motor function of the midbrain DArgic neurons. Journal of neural transmission. Supplementum. (73), 147-160.

Cunha, C., Wietzikoski, E. C., Dombrowski, P., Bortolanza, M., Santos, L. M., Boschen, S. L. & Miyoshi, E. (2009b). Learning processing in the basal ganglia: a mosaic of broken mirrors. Behavioural Brain Research. 199(1), 157-170. Doi: 10.1016/j.bbr.2008.10.001.

Dallakyan, S., & Olson, A. J. (2015). Small-molecule library screening by docking with PyRx. Methods in molecular biology. 1263, 243-250. Doi: 10.1007/978-1-4939-2269-7_19.

Dong, M. X., Chen, G. H. & Hu, L. (2020). DArgic System Alteration in Anxiety and Compulsive Disorders: A Systematic Review of Neuroimaging Studies. Frontiers in Neuroscience. 14, 608520. Doi: 10.3389/fnins.2020.608520.

Durães, F., Pinto, M. & Sousa, E. (2018). Old drugs as new treatments for neurodegenerative diseases. Pharmaceuticals (Basel). 11(2), 44. Doi: 10.3390/ph11020044.

Farooqui, A. A. & Farooqui, T. (2019). Chapter 18 - Therapeutic Potentials of Curcumin in Parkinson’s Disease, Editor(s): Tahira Farooqui, Akhlaq A. Farooqui, Curcumin for Neurological and Psychiatric Disorders, Academic Press, 333-344. Doi:10.1016/B978-0-12-815461-8.00018-9.

Fernandes, L. C., Santos, A. G., Sampaio, T. B., Sborgi, S., Prediger, R., Ferro, M. M., Franco, G., Lipinski, L. & Miyoshi, E. (2020). Exposure to paraquat associated with periodontal disease causes motor damage and neurochemical changes in rats. Human & experimental toxicology. 40(1), 81-89. Doi: 10.1177/0960327120938851.

Fontoura, J. L., Baptista, C., Pedroso, F. B., Pochapski, J.A., Miyoshi, E. & Ferro, M. M. (2017). Depression in Parkinson's Disease: The Contribution from Animal Studies. Parkinson's Disease. 9124160.

Galaj, E., Newman, A. H. & Xi, Z. X. (2020). Dopamine D3 receptor-based medication development for the treatment of opioid use disorder: Rationale, progress, and challenges. Neuroscience & Biobehavioral Reviews. 114, 38–52. Doi: 10.1016/j.neubiorev.2020.04.024.

Gan, L., Falzone, T. L., Zhang, K., Rubinstein, M., Baldessarini, R. J. & Tarazi, F. I. (2004). Enhanced expression of dopamine D(1) and glutamate NMDA receptors in dopamine D(4) receptor knockout mice. Journal of molecular neuroscience. 22(3), 167–178. Doi: 10.1385/JMN:22:3:167.

Gildea, J. J., Xu, P., Kemp, B. A., Carey, R. M., Jose, P. A. & Felder, R. A. (2019). The Dopamine D1 Receptor and Angiotensin Type-2 Receptor are Required for Inhibition of Sodium Transport Through a Protein Phosphatase 2A Pathway. Hypertension. 73(6), 1258–1265. Doi: 10.1161/HYPERTENSIONAHA.119.12705.

Grace, A.A. (2012). DA system dysregulation by the hippocampus: implications for the pathophysiology and treatment of schizophrenia. Neuropharmacology. 62(3), 1342-8. Doi: 10.1016/j.neuropharm.2011.05.011.

Grimes, D., Fitzpatrick, M., Gordon, J., Miyasaki, J., Fon, E.A., Schlossmacher, M., Suchowersky, O., Rajput, A., Lafontaine, A.L, Mestre, T., Cresswell, S. A., Kalia, S. K., Schoffer, K., Zurowski, M., Postuma, R. B., Udow, S., Fox, S., Barbeau, P. & Hutton, B. (2019). Canadian guideline for Parkinson disease. CMAJ. 9(191), E989–E1004. Doi: 10.1503/cmaj.181504.

Gurevich, E. V. & Joyce, J. N. (1999). Distribution of dopamine D3 receptor expressing neurons in the human forebrain: comparison with D2 receptor expressing neurons. Neuropsychopharmacology. 20(1), 60-80. Doi: 10.1016/S0893-133X(98)00066-9.

Haque, N., Hannan, A. & Dash, R. (2019). Il Soo Moon Natural LXRβ agonist stigmasterol confers protection against excitotoxicity after hypoxia- reoxygenation (H/R) injury via regulation of mitophagy in primary hippocampal neurons. bioRxiv. 707059. Doi: 10.1101/707059.

Hisahara, S. & Shimohama, S. (2011). DA receptors and Parkinson's disease. International journal of medicinal chemistry. 403039. Doi: 10.1155/2011/403039.

Horga, G., Cassidy, C.M., Xu, X., Moore, H., Slifstein, M., Van Snellenberg, J. X. & Abi-Dargham, A. (2016). Dopamine-Related Disruption of Functional Topography of Striatal Connections in Unmedicated Patients With Schizophrenia. JAMA Psychiatry. 73 (8), 862–870. Doi: 10.1001/jamapsychiatry.2016.0178.

Hou, H., Wang, C., Jia, S., Hu, S., & Tian, M. (2014). Brain dopaminergic system changes in drug addiction: a review of positron emission tomography findings. Neuroscience Bulletin. 30, 765–776. Doi: 10.1007/s12264-014-1469-5.

Hou, Y., Dan, X., Babbar, M., Wei, Y., Hasselbalch, S.G., Croteau, D.L. & Bohr, V.A. (2019). Ageing as a risk factor for neurodegenerative disease. Nature Reviews Neurology. 15(10), 565-581. Doi: 10.1038/s41582-019-0244-7.

Hynes, C., McWilliams, S., Clarke, M., Fitzgerald, I., Feeney, L., Taylor, M., Boland, F. & Keating, D. (2020). Check the effects: systematic assessment of antipsychotic side-effects in an inpatient cohort. Therapeutic advances in psychopharmacology. 10, 2045125320957119. Doi: 10, 2045125320957119.

Jaber, M., Robinson, S.W., Missale, C. & Caron, M.G. (1996). Dopamine receptors and brain function. Neuropharmacology. 35, 1503-1519. Doi: 10.1016/s0028-3908(96)00100-1.

Ji, H. F. & Shen, L. (2014). The multiple pharmaceutical potential of curcumin in Parkinson's disease. CNS & neurological disorders drug targets. 13(2), 369-73. doi: 10.2174/18715273113129990077.

Kaur, N., Chaudhary, J., Jain, A. & Kishore, L. (2011). Stigmasterol: a comprehensive review. International Journal of Pharmaceutical Sciences and Research. 2(9), 2259-65.

Kim, M. H., Kim, S. H. & Yang, W. M. (2014). Mechanisms of Action of Phytochemicals from Medicinal Herbs in the Treatment of Alzheimerʼs Disease. Planta medica. 80 (15), 1249–1258. Doi: 10.1055/s-0034-1383038.

Kim, S., Chen, J., Cheng, T., Gindulyte, A., He, J., He, S., Li, Q., Shoemaker, B. A., Thiessen, P. A., Yu, B., Zaslavsky, L., Zhang, J. & Bolton, E. E. (2019). PubChem 2019 update: improved access to chemical data. Nucleic Acids Research. 47(D1), D1102-D1109. Doi: 10.1093/nar/gky1033.

Kim, Y. C., Alberico, S. L., Emmons, E. & Narayanan, N. S. (2015). New therapeutic strategies targeting D1-type dopamine receptors for neuropsychiatric disease. Frontiers in biology. 10(3), 230–238. Doi: 10.1007/s11515-015-1360-4.

Krup, V., Prakash, H. L. & Harini, A. (2013). Pharmacological activities of turmeric (Curcuma longa linn): A review. Homeopathy & Ayurvedic Medicine. 2(4), 1000134. Doi: 10.4172/2167-1206.1000133.

Li, H., Yang, P., Knight, W., Guo, Y., Perlmutter, J.S., Benzinger, T. L. S., Morris, J. C. & Xu, J. (2020). The interactions of DA and oxidative damage in the striatum of patients with neurodegenerative diseases. Journal of neurochemistry. 152(2), 235–251. Doi: 10.1111/jnc.14898

Liu, G. J., Wu, L., Wang, S. L., Xu, L. L., Chang, L. Y. & Wang, Y. F. (2016). Efficacy of pramipexole for the treatment of primary restless leg syndrome: a systematic review and meta-analysis of randomized clinical trials. Clinical therapeutics. 38(1), 162–179.e6. Doi: 10.1016/j.clinthera.2015.10.010.

Makhouri, F.R. & Ghasemi, J.B. (2018). In Silico Studies in Drug Research Against Neurodegenerative Diseases. Current neuropharmacology, 16(6), 664–725. Doi: 10.2174/1570159X15666170823095628.

Marchi, J. P, Lívero, F. A. R., Soares, A. A., Silva, G. J., Soares, A. K. V., Giarolo, C. M., Jacomassi, E., Souza, L. M., Bortolucci, W. C., Gazim, Z. C., Campos, C. F. A. A., Gonçalves, J. E., Alferes, C. S., Wietzikoski, S. & Lovato, E. C. W. (2021). Influence of different preparation techniques on the composition and antioxidant action of curcumin and curcuminoids. Boletín Latinoamericano y del Caribe de Plantas Medicinales, in press.

Martel, J.C. & McArthur, S.G. (2020). Dopamine Receptor Subtypes, Physiology and Pharmacology: New Ligands and Concepts in Schizophrenia. Frontiers in Pharmacology. 11, 1003. Doi: 10.3389/fphar.2020.01003.

Martinez, V.J., Asico, L.D., Jose, P.A. & Tiu, A.C. (2020). Lipid Rafts and DA Receptor Signaling. International journal of molecular sciences. 21(23), 8909. Doi: 10.3390/ijms21238909.

Miguelez, C., De Deurwaerdère, P. & Sgambato, V. (2020). Editorial: Non-DArgic Systems in Parkinson's Disease. Frontiers in pharmacology, 11, 593822. Doi: 10.3389/fphar.2020.593822.

Miodownik, C., Lerner, V., Kudkaeva, N., Lerner, P. P., Pashinian, A., Bersudsky, Y., Eliyahu, R., Kreinin, A. & Bergman, J. (2019). Curcumin as Add-On to Antipsychotic Treatment in Patients with Chronic Schizophrenia: A Randomized, Double-Blind, Placebo-Controlled Study. Clinical Neuropharmacology. 42(4), 117-122. Doi: 10.1097/WNF.0000000000000344.

Mishra, A., Singh, S. & Shukla, S. (2018). Physiological and Functional Basis of Dopamine Receptors and Their Role in Neurogenesis: Possible Implication for Parkinson's disease. Journal of experimental neuroscience, 12, 1179069518779829. Doi: 10.1177/1179069518779829.

Missale, C., Nash, S.R., Robinson, S.W., Jaber, M. & Caron., M.G. (1998). DA receptors: from structure to function. Physiol Rev. 78(1), 189-225. Doi: 10.1152/physrev.1998.78.1.189.

Miyoshi, E., Wietzikoski, S., Camplessei, M., Silveira, R., Takahashi, R. N. & Da Cunha, C. (2002). Impaired learning in a spatial working memory version and in a cued version of the water maze in rats with MPTP-induced mesencephalic DArgic lesions. Brain research bulletin. 58(1), 41-7. Doi: 10.1016/s0361-9230(02)00754-2.

Moncrieff, J., Gupta, S. & Horowitz, M. A. (2020). Barriers to stopping neuroleptic (antipsychotic) treatment in people with schizophrenia, psychosis or bipolar disorder. Therapeutic advances in psychopharmacology. 10, 2045125320937910. Doi: 10.1177/2045125320937910.

Morris, G. M., Huey, R., Lindstrom. W., Sanner, M. F., Belew, R. K., Goodsell, D. S. & Olson, A. J. (2009). AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. Journal of Computational Chemistry. 30(16), 2785-91. Doi: 10.1002/jcc.21256.

Mrzljak, L., Bergson, C., Pappy, M., Huff, R., Levenson, R. & Goldman- Rakic, P.S. (1996). Localization of dopamine D4 receptors in GABAergic neurons of the primate brain. Nature. 381, 245–248. Doi: 10.1038/381245a0.

Muhammad, A., Muhammad, J., Farhat, U., Fazal, S., Abdul, S., Gowhar, A., Muhammad, O., Muhammad, S., Ashfaq, A., Abdul, W., Mohamed, E. S., Nisar, A. & Sajjad, A. (2017). Anti-Alzheimer’s Studies on β-Sitosterol Isolated from Polygonum hydropiper L. Frontiers in Pharmacology. 8, 697. Doi: 10.3389/fphar.2017.00697.

Mythri, R. B. & Bharath, M.M. (2012). Curcumin: a potential neuroprotective agent in Parkinson's disease. Current Pharmaceutical Design. 18(1), 91-9. Doi: 10.2174/138161212798918995.

Nakamura, K., Sekine, Y., Ouchi, Y., Tsujii, M., Yoshikawa, E., Futatsubashi, M., Tsuchiya, K. J., Sugihara, G., Iwata, Y., Suzuki, K., Matsuzaki, H., Suda, S., Sugiyama, T., Takei, N. & Mori, N. (2010). Brain serotonin and DA transporter bindings in adults with high-functioning autism. Archives Of General Psychiatry. 67, 59–68. Doi: 10.1001/archgenpsychiatry.2009.137.

Neve, K. A., Seamans, J. K. & Trantham-Davidson, H. (2004). Dopamine receptor signaling. Journal of receptor and signal transduction research. 24(3), 165–205. Doi: 10.1081/rrs-200029981.

Pan, X., Kaminga, A. C., Wen, S. W., Wu, X., Acheampong, K. & Liu, A. (2019). DA and DA receptors in Alzheimer's Disease: a systematic review and network meta-analysis. Frontiers in Aging Neuroscience. 11, 175. Doi: 10.3389/fnagi.2019.00175.

Park, S.J., Kim, D. H., Jung, J.M., Kim, J.M., Cai, M., Liu, X., Hong, J. G., Lee, C. H., Lee, K. R. & Ryu, J. H. (2012). The ameliorating effects of stigmasterol on scopolamine-induced memory impairments in mice. European Journal of Pharmacology. 676 (1–3), 64-70. Doi: 10.1016/j.ejphar.2011.11.050.

Paus, S., Brecht, H. M., Ko ̈ster, J., Seeger, G., Klockgether, T., & Wu ̈llner, U. (2003). Sleep attacks, daytime sleepiness, and DA agonists in Parkinson’s disease. Movement Disorders. 18(6), 659–667. Doi: 10.1002/mds.10417.

Pereira, A. S., Shitsuka, D. M., Pereira, F. J. & Shitsuka, R. (2018) Metodologia do trabalho científico. Santa Maria: UAB / NTE / UFSM.

Peschanski, M., Defer, G., N'guyen, J., Ricolfi, F., Monfort, J., Remy, P., Geny, C., Samson, Y., Hantraye, P., Jeny, R., Gaston, A., Kéravel, Y., Degos, J. D. & Cesaro, P. (1994). Bilateral motor improvement and alteration of L-dopa effect in two patients with Parkinson’s disease following intrastriatal transplantation of foetal ventral mesencephalon. Brain. 117(3), 487–499. Doi: 10.1093/brain/117.3.487.

Raghu, G., Karunanithi, A., Kannan, I. & Preetha, L., K. (2018). Molecular docking study on curcumin and its derivatives as inhibitors of BACE1 in the treatment of Alzheimer’s disease. National Journal of Physiology, Pharmacy and Pharmacology. 8(2), 244-250. Doi:10.5455/njppp.2017.7.1038623102017.

Reichmann, H. (2016). Modern treatment in Parkinson’s disease, a personal approach. Journal of neural transmission. 123(1), 73–80. Doi: 10.1007/s00702-015-1441-1.

Shruthy, V. S. & Shakkeela, Y. (2014). In silico design, docking, synthesis, and evaluation of thiazole Schiff bases. International Journal of Pharmacy and Pharmaceutical Sciences. 6(3), 271-5.

Steeves, T. D., Ko, J. H., Kideckel, D. M., Rusjan, P., Houle, S., Sandor, P., et al. (2010). Extrastriatal dopaminergic dysfunction in tourette syndrome. Annals of Neurology. 67 (2), 170–181. Doi: 10.1002/ana.21809.

Sterling, T. & Irwin, J. J. (2015). ZINC 15 – Ligand Discovery for Everyone. Journal of Chemical Information and Modeling. 55(11), 2324-2337. Doi: 10.1021/acs.jcim.5b00559.

Surmeier, D. J., Ding, J., Day, M., Wang, Z. & Shen, W. (2007). D1 and D2 dopamine-receptor modulation of striatal glutamatergic signaling in striatal medium spiny neurons. Trends in Neuroscience. 30, 228-235. Doi: 10.1016/j.tins.2007.03.008.

Tarazi, F. I., Zhang, K. & Baldessarini, R. J. (2004). Dopamine D4 receptors: beyond schizophrenia. Journal of receptor and signal transduction research. 24, 131–147. Doi: 10.1081/rrs-200032076.

Thomsen, R. & Christensen, M. H. (2006). MolDock: A New Technique for High-Accuracy Molecular Docking. Journal of Medicinal Chemistry. 49 (11), 3315-3321. Doi: 10.1021/jm051197e.

Trott, O. & Olson, A. J. (2010). AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of computational chemistry, 31(2), 455–461. Doi: 10.1002/jcc.21334.

Vivancos, M. & Moreno, J. J. (2005). beta-Sitosterol modulates antioxidant enzyme response in RAW 264.7 macrophages. Free radical biology & medicine. 39(1), 91-7. Doi: 10.1016/j.freeradbiomed.2005.02.025.

Wang, X, Kim, J. R., Lee, S. B., Kim, Y. J., Jung, M. Y., Kwon, H. W. & Ahn, Y. J. (2014). Effects of curcuminoids identified in rhizomes of Curcuma longa on BACE-1 inhibitory and behavioral activity and lifespan of Alzheimer's disease Drosophila models. BMC Complementary and Alternative Medicine. 5(14), 88. Doi: 10.1186/1472-6882-14-88.

Wietzikoski, E. C., Boschen, S. L., Miyoshi, E., Bortolanza, M., Dos Santos, L. M., Frank, M., Brandão, M. L., Winn, P. & Da Cunha, C. (2012). Roles of D1-like DA receptors in the nucleus accumbens and dorsolateral striatum in conditioned avoidance responses. Psychopharmacology (Berl). 219(1), 159-69. Doi: 10.1007/s00213-011-2384-3.

Wooten, D., Goer, F., Beltzer, M., Vitaliano, G., Brennan, B., Crowley, D., Alpert, N., Normandin, M., Fakhri, G.E. & Pizzagalli, D. (2015). Reduced striatal DA transporter binding in major depressive disorder. Journal of Nuclear Medicine. 56(3), 527.

Yadav, M., Parle, M., Jindal, D. K. & Dhingra, S. (2018). Protective effects of stigmasterol against ketamine‐induced psychotic symptoms: Possible behavioral, biochemical and histopathological changes in mice. Pharmacological Reports. 70(3), 591-599. Doi: 10.1016/j.pharep.2018.01.001.

Yang, A. C. & Tsai, S. J. (2017). New Targets for Schizophrenia Treatment beyond the DA Hypothesis. International journal of molecular sciences. 18, 1689. Doi: 10.3390/ijms18081689.

Yang, P., Perlmutter, J. S., Benzinger, T.L.S., Morris, J. C. & Xu, J. (2020). Dopamine D3 receptor: A neglected participant in Parkinson Disease pathogenesis and treatment? Ageing Research Reviews. 57, 100994, Doi: 10.1016/j.arr.2019.100994.

Yatham, L. N., Liddle, P. F., Shiah, I.S., Lam, R.W., Ngan, E., Scarrow, G., Imperial, M., Stoessl, J., Sossi, V. & Ruth, T. J. (2002). PET study of [18F]6-fluoro-L-dopa uptake in neuroleptic and mood-stabilizer-naive first-episode nonpsychotic mania: effects of treatment with divalproex sodium. The American Psychiatric Association. 159, 768–774. Doi: 10.1176/appi.ajp.159.5.768.

Yin, Y., Liu, X., Liu, J., Cai, E., Zhao, Y., Li, H., Zhang, L., Li, P. & Gao, Y. (2018). The effect of beta-sitosterol and its derivatives on depression by the modification of 5-HT, DA and GABA-ergic systems in mice. RSC Advances. 8, 671-680. Doi: 10.1039/C7RA11364A.

Youdim, M., B. H. & Buccafusco, J. J. (2005). Multi-functional drugs for various CNS targets in the treatment of neurodegenerative disorders. Trends in Pharmacological Sciences. 26(1). Doi: 10.1016/j.tips.2004.11.007.

Yu, Z. F., Kong, L. D. & Chen, Y. (2002). Antidepressant activity of aqueous extracts of Curcuma longa in mice. Journal of Ethnopharmacology. v. 83. p. 161-165. Doi: 10.1016/S0378-8741(02)00211-8.

Yun, J. Y., Kim, Y. E., Yang, H. J., Kim, H. J. & Jeon, B. (2017). Twice-Daily versus Once-Daily Pramipexole Extended Release Dosage Regimens in Parkinson's Disease. Parkinson´s Disease. 2017, 8518929. Doi: 10.1155/2017/8518929.

Zhai, S., Shen, W., Graves, S. M. & Surmeier, D. J. (2019). Dopaminergic modulation of striatal function and Parkinson’s disease. Journal of neural transmission. 126(4), 411–422. Doi: 10.1007/s00702-019-01997-y.

Downloads

Publicado

02/07/2021

Como Citar

BERNARDI, D. M. .; MARCHI, J. P. .; ARAÚJO, C. de S. A. . .; NASCIMENTO, V. R. do .; LIMA , D. de S. .; WIETZIKOSKI, S. .; FERRO , M. M. .; MIYOSHI, E. . .; LÍVERO , F. A. dos R. .; SEIXAS, F. A. V. .; LOVATO, E. C. W. . Estudos de docagem molecular de dopamina de metabólitos biologicamente ativos de Curcuma longa L. Research, Society and Development, [S. l.], v. 10, n. 7, p. e59910716992, 2021. DOI: 10.33448/rsd-v10i7.16992. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/16992. Acesso em: 17 jul. 2024.

Edição

Seção

Ciências da Saúde