Impactos da seca e das mudanças climáticas no metabolismo das plantas: Uma revisão

Autores

DOI:

https://doi.org/10.33448/rsd-v10i8.17060

Palavras-chave:

Metabolismo vegetal; Mudanças climáticas; Produção agrícola; Seca.

Resumo

Drought and predicted changes in climate, such as increased atmospheric CO2 concentration and high temperature, may affect the growth and productivity of crop plants and generate varying responses, including morphological, physiological, biochemical and molecular changes. Water deficit negatively affects photosynthesis, while increasing CO2 can benefit plants and attenuate photo-oxidative damage, especially in C3 metabolism species. However, the excess heat associated with this increase can affect photosynthetic efficiency differently, depending on the species and/or variety studied. In addition, the responses to the combination of these factors are poorly understood and cannot be extracted directly from the effects of each of these agents applied in isolation. This review sought to address the isolated and combined effects of water deficit and climate change on agricultural production, reporting how plant metabolism is affected by rising temperatures and high CO2 concentration. This understanding is important to monitor the behavior of plants in the face of future climatic scenarios in order to develop strategies that can confer resistance to plants and ensure food security for agricultural production.

Referências

Abdelrahman, M., Burritt, D. J., Gupta, A., Tsujimoto, H., & Tran, L. S. P. (2020). Heat stress effects on source–sink relationships and metabolome dynamics in wheat. Journal of Experimental Botany, 71, 543–554. 10.1093/jxb/erz296.

AbdElgawad, H., Zinta, G., Beemster, G. T. S., Janssens, I. A., & Asard, H. (2016.) Future Climate CO2 Levels Mitigate Stress Impact on Plants: Increased Defense or Decreased Challenge? Frontiers in Plant Science, 7, 556. 10.3389/fpls.2016.00556.

Ainsworth, E. A., Lemonnier, P., & Wedow, J. M. (2020). The influence of rising tropospheric carbon dioxide and ozone on plant productivity. Plant Biology, 22, 5–11. 10.1111/plb.12973.

Ainsworth, E. A., & Long, S. P. (2005). What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2. New Phytologist, 165 (2), 351-371. 10.1111/j.1469-8137.2004.01224.x.

Alberto, S., & Borges, B. (2009). Fotoinibição da Fotossíntese. Revista Brasileira de Biociências, 7 (4), 463–472.

Andrianasolo, F. N., Casadebaig, P., Langlade, N., Debaeke, P., & Maury, P. (2016). Effects of plant growth stage and leaf aging on the response of transpiration and photosynthesis to water deficit in sunflower. Functional Plant Biology, 43 (8), 797–805. 10.1071/FP15235.

Armond, P. A., Schreiber, U., & Björkman, O. (1978). Photosynthetic Acclimation to Temperature in the Desert Shrub, Larrea divaricata: II. Light-harvesting Efficiency and Electron Transport. Plant Physiological, 61 (3), 411–415. 10.1104/PP.61.3.411.

Aspinwall, M. J., Blackman, C. J., de Dios, V. R., Busch, F. A., Rymer, P. D., Loik, M. E., Drake, J. E., Pfautsch, S., Smith, R. A., Tjoelker, M. G., & Tissue, D. T. (2018). Photosynthesis and carbon allocation are both important predictors of genotype productivity responses to elevated CO2 in Eucalyptus camaldulensis. Tree Physiological, 38 (9), 1286–1301. 10.1093/treephys/tpy045.

Asseng, S., Ewert, F., Martre, P., Rötter, R. P., Lobell, D. B., Cammarano, D., & White, J. W. (2015). Rising temperatures reduce global wheat production. Natural Climate Change, 5, 143–147. 10.1038/nclimate2470.

Bagley, J., Rosenthal, D. M., Ruiz-Vera, U. M., Siebers, M. H., Kumar, P., Ort, D. R., & Bernacchi, C. J. (2015). The influence of photosynthetic acclimation to rising CO2 and warmer temperatures on leaf and canopy photosynthesis models. Global Biogeochemistry Cycles, 29, 194–206. 10.1002/2014GB004848.

Barroso Neto, J. (2019). Efeito do aumento da concentração ambiente de CO2 na eficiência fotossintética e proteção oxidativa em plantas de arroz submetidas ao déficit hídrico. Dissertação de Mestrado, Universidade Federal Rural de Pernambuco, Unidade Acadêmica de Serra Talhada. Serra Talhada, Pernambuco, Brasil. 99p.

Barroso Neto, J., Hermínio, P. J., Amorim, T. L., Morato, R. P., & Ferreira-Silva, S. L. (2018). Influência da temperatura nas respostas fotossintéticas de ora-pró-nobis (Pereskia aculeata) crescidas em ambiente semiárido. Anais III SIMPROVS – Simpósio Nacional de Estudos para Produção Vegetal no Semiárido, Campina Grande, Paraíba, Brasil. (1), ISSN 978-85-7946-272-6.

Betti, M., Bauwe, H., Busch, F. A., Fernie, A. R., Keech, O., Levey, M., Ort, D. R., Parry, M. A. J., Sage, R., Timm, S., Walker, B., & Weber, A. P. M. (2016). Manipulating photorespiration to increase plant productivity: Recent advances and perspectives for crop improvement. Journal of Experimental Botany, 67 (10), 2977-2988. 10.1093/jxb/erw076.

Blum, A. (2017). Osmotic adjustment is a prime drought stress adaptive engine in support of plant production. Plant, Cell & Environmental, 40(1), 4–10. 10.1111/pce.12800.

Bollig, C., & Feller, U. (2014). Impacts of drought stress on water relations and carbon assimilation in grassland species at different altitudes. Agriciculture, Ecosystems & Environmental, 188, 212–220. 10.1016/j.agee.2014.02.034.

Bowes, G. (1991). Growth at elevated CO2 ‐ Photosynthetic responses mediated through Rubisco. Plant Cell and Environment, 14, 795–806. 10.1111/j.1365-3040.1991.tb01443.x

Broughton, K. J., Smith, R. A., Duursma, R. A., Tan, D. K. Y., Payton, P., Bange, M. P., & Tissue, D. T. (2017). Warming alters the positive impact of elevated CO2 concentration on cotton growth and physiology during soil water deficit. Functional Plant Biology, 44 (2), 267-278. 10.1071/FP16189.

Chapin, S. F., & Díaz, S. (2020). Interactions between changing climate and biodiversity: Shaping humanity’s future. Proceedings of the National Academy of Sciences. 117, 6295–6296. 10.1073/pnas.2001686117.

Chen, D., & Dai, A. (2017). Dependence of estimated precipitation frequency and intensity on data resolution. Climate Dynamics, 50, 3625-3647. 10.1007/s00382-017-3830-7.

Chiu, R. S., Pan, S., Zhao, R., & Gazzarrini, S. (2016). ABA-dependent inhibition of the ubiquitin proteasome system during germination at high temperature in Arabidopsis. The Plant Journal, 88, 749–761. 10.1111/tpj.13293.

Comas, L. H., Becker, S. R., Cruz, V. M. V., Byrne, P. F., & Dierig, D. A. (2013). Root traits contributing to plant productivity under drought. Frontier Plant Science, 4, 442. 10.3389/fpls.2013.00442.

Dalal, J., Lopez, H., Vasani, N. B., Hu, Z., Swift, J. E., Yalamanchili, R., Dvora, M., Lin, X., Xie, D., Qu, R., & Sederoff, H. W. (2015). A photorespiratory bypass increases plant growth and seed yield in biofuel crop Camelina sativa. Biotechnology Biofuels, 8, 175. 10.1186/s13068-015-0357-1.

Daryanto, S., Wang, L., & Jacinthe, P. A. (2017). Global synthesis of drought effects on cereal, legume, tuber and root crops production: A review. Agric. Water Management, 179 (1), 18–33. 10.1016/j.agwat.2016.04.022.

Delucia, E. H., Sasek, T. W., & Strain, B. R. (1985). Photosynthetic inhibition after long-term exposure to elevated levels of atmospheric carbon dioxide. Photosynthesis Research, 7, 175–184. 10.1007/BF00037008.

Dusenge, M. E., Duarte, A. G., & Way, D. A. (2019). Plant carbon metabolism and climate change: elevated CO2 and temperature impacts on photosynthesis, photorespiration and respiration. New Phytologist., 221 (1), 32-49. 10.1111/nph.15283.

Easlon, H. M., Carlisle, E., McKay, J. K., & Bloom, A. J. (2015). Does Low Stomatal Conductance or Photosynthetic Capacity Enhance Growth at Elevated CO2 in Arabidopsis?. Plant Physiology, 167, 793–799. 10.1104/pp.114.245241.

Ehleringer, J. R., Cerling, T. E., & Helliker, B. R. (1997). C-4 photosynthesis, atmospheric CO2 and climate. Oecologia, 112 (3), 285–299. 10.1007/s004420050311.

Eller, F., Lambertini, C., Nguyen, L. X., & Brix, H. (2014). Increased invasive potential of non-native Phragmites australis: Elevated CO2 and temperature alleviate salinity effects on photosynthesis and growth. Global Change Biology, 20 (2), 531–543. 10.1111/gcb.12346.

Elliott, J., Glotter, M., Ruane, A. C., Boote, K. J., Hatfield, J. L., Jones, J. W., Rosenzweig, C., Smith, L. A., & Foster, I. (2017). Characterizing agricultural impacts of recent large-scale US droughts and changing technology and management. Agricultural Systems., 159 (1), 275-281. 10.1016/j.agsy.2017.07.012.

Embiale, A., Hussein, M., Husen, A., Sahile, S., & Mohammed, K. (2016). Differential sensitivity of Pisum sativum L. cultivars to water-deficit stress: Changes in growth, water status, chlorophyll fluorescence and gas exchange attributes. Journal of Agronomy, 15(2), 45–57. 10.3923/ja.2016.45.57.

Eyshi-Rezaei, E., Webber, H., Gaiser, T., Naab, J., & Ewert, F. (2015). Heat stress in cereals: Mechanisms and modelling. Europan Journal Agronomy, 64, 98–113. 10.1016/j.eja.2014.10.003.

Fay, P. A., Newingham, B. A., Polley, H. W., Morgan, J. A., LeCain, D. R., Nowak, R. S., & Smith, S. D. (2015). Dominant plant taxa predict plant productivity responses to CO2 enrichment across precipitation and soil gradients. AoB Plants, 7, 1-7. 10.1093/aobpla/plv027.

Flexas, J., Diaz-Espejo, A., Galmés, J., Kaldenhoff, R., Medrano, H., & Ribas-Carbo, M. (2007). Rapid variations of mesophyll conductance in response to changes in CO2 concentration around leaves. Plant, Cell Environmental., 30, 1284–1298. 10.1111/j.1365-3040.2007.01700.x.

Foyer, C. H., Neukermans, J., Queval, G., Noctor, G., & Harbinson, J. (2012). Photosynthetic control of electron transport and the regulation of gene expression. Journal of Experimental Botanic, 63 (4), 1637–1661. 10.1093/jxb/ers013.

Foyer, C. H., Bloom, A. J., Queval, G., & Noctor, G. (2009). Photorespiratory Metabolism: Genes, Mutants, Energetics, and Redox Signaling. Annuals Review of Plant Biology, 60, 455–484. 10.1146/annurev.arplant.043008.091948.

Foyer, C. H., & Noctor, G. (2003). Redox sensing and signalling associated with reactive oxygen in chloroplasts, peroxisomes and mitochondria. Physiology Plant, 119, 355–364. 10.1034/j.1399-3054.2003.00223.x.

Foyer, C.H., & Noctor, G. (2000). Oxygen processing in photosynthesis: Regulation and signalling. New Phytologist, 146 (3), 359-388. 10.1046/j.1469-8137.2000.00667.x.

Gamage, D., Thompson, M., Sutherland, M., Hirotsu, N., Makino, A., & Seneweera, S. (2018). New insights into the cellular mechanisms of plant growth at elevated atmospheric carbon dioxide concentrations. Plant Cell Environmental, 41 (6), 1233-1246. 10.1111/pce.13206.

Gao, J., Han, X., Seneweera, S., Li, P., Zong, Y. Z., Dong, Q., Lin, E. Da, & Hao, X. Y. (2015). Leaf photosynthesis and yield components of mung bean under fully open-air elevated [CO2]. Journal of Integrative Agriculture, 14, 5, 977–983. 10.1016/S2095-3119(14)60941-2.

Greer, D. H. (2015). Photon flux density and temperature-dependent responses of photosynthesis and photosystem II performance of apple leaves grown in field conditions. Functional Plant Biology, 42, 782-791. 10.1071/FP15068.

Hansen, J., & Sato, M. (2016). Regional climate change and national responsibilities. Environmental Research Letter, 11 (3), 034009. 10.1088/1748-9326/11/3/034009.

Hasanuzzaman, M., Nahar, K., Alam, M. M., Roychowdhury, R., & Fujita, M., (2013a). Physiological, biochemical, and molecular mechanisms of heat stress tolerance in plants. International Journal of Molecular Scince, 14 (5), 9643-9684. 10.3390/ijms14059643.

Hasanuzzaman, M., Nahar, K., & Fujit, M., (2013b). Extreme Temperature Responses, Oxidative Stress and Antioxidant Defense in Plants, in: Abiotic Stress - Plant Responses and Applications in Agriculture. 10.5772/54833.

Hasanuzzaman, M., Hossain, M. A., Da Silva, J. A. T., & Fujita, M., (2012). Plant response and tolerance to abiotic oxidative stress: Antioxidant defense is a key factor, in: Crop Stress and its Management: Perspectives and Strategies. Springer Netherlands, p. 261–315. 10.1007/978-94-007-2220-0_8.

Haworth, M., Elliott-Kingston, C., & McElwain, J. C. (2013). Co-ordination of physiological and morphological responses of stomata to elevated [CO2] in vascular plants. Oecologia, 171 (1), 71–82. 10.1007/s00442-012-2406-9.

Hodges, M., Dellero, Y., Keech, O., Betti, M., Raghavendra, A. S., Sage, R., Zhu, X. G., Allen, D. K., & Weber, A. P. M. (2016). Perspectives for a better understanding of the metabolic integration of photorespiration within a complex plant primary metabolism network. Journal of Experimental Botany, 67 (10), 3015-3026. 10.1093/jxb/erw145.

Hussain, H. A., Men, S., Hussain, S., Chen, Y., Ali, S., Zhang, s., Zhang, K., Li, Y., Xu, Q., Liao, C., & Wang, L. (2019). Interactive effects of drought and heat stresses on morpho-physiological attributes, yield, nutrient uptake and oxidative status in maize hybrids. Scientific Reports, 9, 3890. 10.1038/s41598-019-40362-7.

Impa, S. M., Sunoj, V. S. J., Krassovskaya, I., Bheemanahalli, R., Obata, T., & Jagadish, S. V. K. (2018). Carbon balance and source-sink metabolic changes in winter wheat exposed to high night-time temperature. Plant Cell Environmental, 42 (4), 1233-1246. 10.1111/pce.13488.

IPCC. (2018). Summary for policymakers. In: Masson-Delmotte V, Zhai P, Pörtner H-O,, et al., eds. Geneva, Switzerland: World Meteorological Organization, 32.

IPCC, (2013). Climate Change 2013: The Physical Science Basis, Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. 10.1017/CBO9781107415324.

IPCC, (2007). IPCC Fourth Assessment Report (AR4). 1, 976.

Jaleel, C. A., Manivannan, P., Wahid, A., Farooq, M., Al-Juburi, H. J., Somasundaram, R., & Panneerselvam, R. (2009). Drought stress in plants: A review on morphological characteristics and pigments composition. International Journal of Agriculture Biology, 11 (1), 100-105. 08–305/IGC-DYT/2009/11–1–100–105.

Janni, M., Mariolina, G., Maestri, E., Marmiroli, M., Valliyodan, B., Nguyen, H. T., & Marmiroli, N. (2020). Molecular and genetic bases of heat stress response in crop plants for increased resilience and productivity. Journal of Experimental Botany, 71, 1-23. 10.1093/jxb/eraa034.

Jump, A. S., & Peñuelas, J. (2005). Running to stand still: Adaptation and the response of plants to rapid climate change. Ecology Letter, 8, 1010–1020. 10.1111/j.1461-0248.2005.00796.x.

Lahive, F., Hadley, P., & Daymond, A. J. (2017). The impact of elevated CO2 and water deficit stress on growth and photosynthesis of juvenile cacao (Theobroma cacao L.). Photosynthetica, 56 (3), 911-920. 10.1007/s11099-017-0743-y.

Langridge, P., & Reynolds, M. P. (2015). Genomic tools to assist breeding for drought tolerance. Current Opinion in Biotechnology, 32, 130-135. 10.1016/j.copbio.2014.11.027.

Lawlor, D. W., & Cornic, G. (2002). Photosynthetic carbon assimilation and associated metabolism in relation to water deficits in higher plants. Plant Cell Environmental, 25, 275–294. 10.1046/j.0016-8025.2001.00814.x.

Leakey, A. D. B., Ainsworth, E. A., Bernacchi, C. J., Rogers, A., Long, S. P., & Ort, D. R. (2009). Elevated CO2 effects on plant carbon, nitrogen, and water relations: Six important lessons from FACE. Journal of Experimental Botany, 60 (10), 2859–2876. 10.1093/jxb/erp096.

Leng, G., Tang, Q., & Rayburg, S. (2015). Climate change impacts on meteorological, agricultural and hydrological droughts in China. Global. Planet Change, 126, 23–34. 10.1016/j.gloplacha.2015.01.003.

Lesk, C., Rowhani, P., & Ramankutty, N. (2016). Influence of extreme weather disasters on global crop production. Nature, 529, 84–87. 10.1038/nature16467.

Lewis, J. D., Smith, R. A., Ghannoum, O., Logan, B. A., Phillips, N. G., & Tissue, D. T. (2013). Industrial-age changes in atmospheric [CO2] and temperature differentially alter responses of faster- and slower-growing Eucalyptus seedlings to short-term drought. Tree Physioly, 33 (5), 475–488. 10.1093/treephys/tpt032.

Lipiec, J., Doussan, C., Nosalewicz, A., & Kondracka, K. (2013). Effect of drought and heat stresses on plant growth and yield: a review. International Agrophysics, 27 (4), 463–477. 10.2478/intag-2013-0017.

Ludwig, F., & Asseng, S. (2010). Potential benefits of early vigor and changes in phenology in wheat to adapt to warmer and drier climates. Agriculture Systems 103, 3, 127–136. 10.1016/j.agsy.2009.11.001.

Maréchaux, I., Bartlett, M. K., Sack, L., Baraloto, C., Engel, J., Joetzjer, E., & Chave, J. (2015). Drought tolerance as predicted by leaf water potential at turgor loss point varies strongly across species within an Amazonian forest. Functional Ecology, 29 (10), 1268–1277. 10.1111/1365-2435.12452.

Mathur, S., Agrawal, D., & Jajoo, A. (2014). Photosynthesis: Response to high temperature stress. Journal of Photochemistry and Photobiology B: Biology, 137, 116–126. 10.1016/j.jphotobiol.2014.01.010.

Mhamdi, A., & Noctor, G. (2016). High CO2 Primes Plant Biotic Stress Defences through Redox-Linked Pathways. Plant Physiology, 172, 929–942. 10.1104/pp.16.01129.

Morgan, J. A., Lecain, D. R., Mosier, A. R., & Milchunas, D. G. (2001). Elevated CO2 enhances water relations and productivity and affects gas exchange in C3 and C4 grasses of the Colorado shortgrass steppe. Global Change Biology, 7, 451–466. 10.1046/j.1365-2486.2001.00415.x.

Nobre, C. A., Reid, J., & Veiga, A. P. S. (2012). Fundamentos Científicos das Mudanças Climáticas, Inpe.

Noctor, G., & Mhamdi, A. (2017). Climate Change, CO2, and Defense: The Metabolic, Redox, and Signaling Perspectives. Trends Plant Science, 22 (10), 857–870. 10.1016/j.tplants.2017.07.007.

Nowak, R. S., Ellsworth, D. S., & Smith, S. D. (2004). Functional responses of plants to elevated atmospheric CO2 - Do photosynthetic and productivity data from FACE experiments support early predictions? New Phytology, 162, 253-280. 10.1111/j.1469-8137.2004.01033.x.

O’Leary, G. J., Christy, B., Nuttall, J., Huth, N., Cammarano, D., Stöckle, C., Basso, B., Shcherbak, I., Fitzgerald, G., Luo, Q., Farre-Codina, I., Palta, J., & Asseng, S. (2015). Response of wheat growth, grain yield and water use to elevated CO2 under a Free-Air CO2 Enrichment (FACE) experiment and modelling in a semi-arid environment. Global Change Biology, 21, 2670–2686. 10.1111/gcb.12830.

Oliveira, A. D. de, Fernandes, E. J., & Rodrigues, T. J. D. (2005). Condutância estomática como indicador de estresse hídrico em feijão. Engenharia Agrícola, 25 (1), 86–95. 10.1590/S0100 -69162005000100010.

Oliveira, V. F., Silva, E. A., Zaidan, L. B. P., & Carvalho, M. A. M. (2013). Effects of elevated CO2 concentration and water deficit on fructan metabolism in Viguiera discolor Baker. Plant Biology, 15, 471–482. 10.1111/j.1438-8677.2012.00654.x.

Pan, S., Chen, G., Ren, W., Dangal, S. R. S., Banger, K., Yang, J., Tao, B., & Tian, H. (2018). Responses of global terrestrial water use efficiency to climate change and rising atmospheric CO2 concentration in the twenty-first century. International Journal Digital Earth, 11 (6), 558–582. 10.1080/17538947.2017.1337818.

Pareek, A., Dhankher, O. P., & Foyer, C. H. (2020). Mitigating the impact of climate change on plant productivity and ecosystem sustainability. Journal of Experimental Botany, 71 (9), 451-456. 10.1093/jxb/erz518.

Paudel, I., Halpern, M., Wagner, Y., Raveh, E., Yermiyahu, U., Hoch, G., & Klein, T. (2018). Elevated CO2 compensates for drought effects in lemon saplings via stomatal downregulation, increased soil moisture, and increased wood carbon storage. Environmental Experimental Botany., 148, 117–127. 10.1016/j.envexpbot.2018.01.004.

Poorter, H., & Navas, M. L. (2003). Plant growth and competition at elevated CO2: On winners, losers and functional groups. New Phytology, 157 (2), 175-198. 10.1046/j.1469-8137.2003.00680.x.

Purcell, C., Batke, S. P., Yiotis, C., Caballero, R., Soh, W. K., Murray, M., & McElwain, J. C. (2018). Increasing stomatal conductance in response to rising atmospheric CO2. Annaus Botany, 121 (6), 1137-1149. 10.1093/aob/mcy023.

Reich, P. B., Hobbie, S. E., & Lee, T. D. (2014). Plant growth enhancement by elevated CO2 eliminated by joint water and nitrogen limitation. Nature Geoscience, 7, 920–924. 10.1038/ngeo2284.

Rivas, R., Falcão, H. M., Ribeiro, R. V., Machado, E. C., Pimentel, C., & Santos, M. G. (2016). Drought tolerance in cowpea species is driven by less sensitivity of leaf gas exchange to water deficit and rapid recovery of photosynthesis after rehydration. South African Journal Botany, 103, 101–107. 10.1016/j.sajb.2015.08.008.

Seneweera, S., Makino, A., Hirotsu, N., Norton, R., & Suzuki, Y. (2011). New insight into photosynthetic acclimation to elevated CO2: The role of leaf nitrogen and ribulose-1,5-bisphosphate carboxylase/oxygenase content in rice leaves. Environmental Experimental Botany, 71 (2), 128–136. 10.1016/j.envexpbot.2010.11.002.

South, P. F., Cavanagh, A. P., Liu, H. W., & Ort, D. R. (2019). Synthetic glycolate metabolism pathways stimulate crop growth and productivity in the field. Science, 363, 6422, eaat9077. 10.1126/science.aat9077.

Takahashi, S., & Badger, M.R. (2010). Photoprotection in plants: A new light on photosystem II damage. Trends Plant Science, 16(1), 53-60. 10.1016/j.tplants.2010.10.001.

Takahashi, S., Bauwe, H., & Badger, M. (2007). Impairment of the Photorespiratory Pathway Accelerates Photoinhibition of Photosystem II by Suppression of Repair But Not Acceleration of Damage Processes in Arabidopsis. Plant Physiology, 144, 487–494. 10.1104/pp.107.097253

Trenberth, K. E., Dai, A., Van der Schrier, G., Jones, P. D., Barichivich, J., Briffa, K. R., & Sheffield, J. (2013). Global warming and changes in drought. Nature Climate Change, 4(1), 17–22. 10.1038/nclimate2067.

Tyree, M., & Alexander, J. (1993). Plant water relations and the effects of elevated CO2: a review and suggestions for future research. Vegetation, 104, 47–62. 10.1007/BF00048144.

Uddin, S., Löw, M., Parvin, S., Fitzgerald, G. J., Tausz-Posch, S., Armstrong, R., O’Leary, G., & Tausz, M. (2018). Elevated [CO2] mitigates the effect of surface drought by stimulating root growth to access sub-soil water. PLoS One, 13 (6), 1-20. 10.1371/journal.pone.0198928.

Vibhuti, S. C., Bargali, K., & Bargali, S. S. (2015). Seed germination and seedling growth parameters of rice (Oryza sativa) varieties as affected by salt and water stress. Indian Journal Agriculture Science, 85 (1), 102–108.

Voss, I., Sunil, B., Scheibe, R., & Raghavendra, A. S. (2013). Emerging concept for the role of photorespiration as an important part of abiotic stress response. Plant Biology, 15 (4), 713-722. 10.1111/j.1438-8677.2012.00710.x.

Walker, B.J., VanLoocke, A., Bernacchi, C. J., & Ort, D. R. (2016). The Costs of Photorespiration to Food Production Now and in the Future. Annuals Review Plant Biology, 67(1), 107–129. 10.1146/annurev-arplant-043015-111709.

Wang, D. R., Bunce, J. A., Tomecek, M. B., Gealy, D., McClung, A., McCouch, S. R., & Ziska, L. H. (2016). Evidence for divergence of response in Indica, Japonica, and wild rice to high CO2 × temperature interaction. Global Change Biology, 22 (7), 2620–2632. 10.1111/gcb.13279.

Weiwei, L. U., Xinxiao, Y. U., Guodong, J. I. A., Hanzhi, L. I., & Ziqiang, L. I. U. (2018). Responses of Intrinsic Water-use Efficiency and Tree Growth to Climate Change in Semi-Arid Areas of North China. Science Reports, 8 (14), 1-8. 10.1038/s41598-017-18694-z.

Wingler, A., Lea, P. J., Quick, W. P., & Leegood, R. C. (2000). Photorespiration: metabolic pathways and their role in stress protection. Philosophical Transactions of the Royal Society B: Biological Sciences, 355, 1517–1529. 10.1098/rstb.2000.0712.

Wise, R. R., Olson, A. J., Schrader, S. M., & Sharkey, T. D. (2004). Electron transport is the functional limitation of photosynthesis in field-grown Pima cotton plants at high temperature. Plant, Cell Environmental, 27 (6), 717–724. 10.1111/j.1365-3040.2004.01171.x.

Xiong, D., Ling, X., Huang, J., & Peng, S. (2017) Meta-analysis and dose-response analysis of high temperature effects on rice yield and quality. Environmental of Experimental Botany, 141,1–9. 10.1016/j.envexpbot.2017.06.007.

Xu, Z., Jiang, Y., Jia, B., & Zhou, G. (2016). Elevated-CO2 Response of Stomata and Its Dependence on Environmental Factors. Frontiers Plant Science, 7, 657. 10.3389/fpls.2016.00657.

Xu, H., Zhang, J., Zeng, J., Jiang, L., Liu, E., Peng, C., He, Z., & Peng, X. (2009). Inducible antisense suppression of glycolate oxidase reveals its strong regulation over photosynthesis in rice. Journal Experimental Botany, 60 (6), 1799–1809. 10.1093/jxb/erp056.

Yang, J., Sicher, R. C., Kim, M. S., & Reddy, V. R. (2014). Carbon dioxide enrichment restrains the impact of drought on three maize hybrids differing in water stress tolerance in water stressed environments. International Journal Plant Biology, 5 (1), 38-44. 10.4081/pb.2014.5535.

Zargar, S. M., Gupta, N., Nazir, M., Mahajan, R., Malik, F. A., Sofi, N. R., Shikari, A. B., & Salgotra, R. K. (2017). Impact of drought on photosynthesis: Molecular perspective. Plant Genetic, 11, 154-159. 10.1016/j.plgene.2017.04.003.

Zelitch, I., Schultes, N. P., Peterson, R. B., Brown, P., & Brutnell, T. P. (2009). High Glycolate Oxidase Activity Is Required for Survival of Maize in Normal Air. Plant Physiology, 149 (1), 195–204. 10.1104/pp.108.128439.

Zinta, G., Abdelgawad, H., Domagalska, M. A., Vergauwen, L., Knapen, D., Nijs, I., Janssens, I. A., Beemster, G. T. S., & Asard, H. 2014. Physiological, biochemical, and genome-wide transcriptional analysis reveals that elevated CO2 mitigates the impact of combined heat wave and drought stress in Arabidopsis thaliana at multiple organizational levels. Glob. Chang. Biol., 20 (12), 3670–3685. 10.1111/gcb.12626.

Downloads

Publicado

10/07/2021

Como Citar

BARROSO NETO, J.; SILVA, J. R. I.; BEZERRA, C. W. F.; AMORIM, T. L. .; HERMÍNIO, P. J.; MORATO, R. P.; ALBUQUERQUE-SILVA, M. M.; SIMÕES, V. J. L. P. Impactos da seca e das mudanças climáticas no metabolismo das plantas: Uma revisão. Research, Society and Development, [S. l.], v. 10, n. 8, p. e16710817060, 2021. DOI: 10.33448/rsd-v10i8.17060. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/17060. Acesso em: 23 nov. 2024.

Edição

Seção

Ciências Agrárias e Biológicas