Síntese, caracterização magnética e elétrica da ferrita de aluminato de cobre

Autores

DOI:

https://doi.org/10.33448/rsd-v10i8.17314

Palavras-chave:

Ferritas; Propriedades magnéticas; Condutividade elétrica; Energia de ativação.

Resumo

Atualmente, as ferritas têm sido tema de muitas pesquisas devido as suas vantagens e propriedades que podem ser facilmente manipuladas, sendo assim de grande interesse tecnológico e científico. Para tanto, a distribuição dos cátions e interações magnéticas destacam um papel importante nestes materiais e, portanto, têm sua importância científica. As relações entre a composição química, estrutura cristalina, comportamento magnético e elétrico foram investigadas em ferritas de aluminato de cobre. As ferritas CuAlXFe2-XO4, onde x = 0,0; 0,5; 1,0 e 1,5 foram obtidas pelo método convencional de cerâmicas, reação estado-sólido entre os óxidos de ferro, alumínio e cobre.  A mistura de óxidos foram pré-sinterizadas por 24 horas a 800°C e depois sinterizadas a 1100°C durante 8h. As propriedades magnéticas foram medidas por um magnetômetro de amostra vibrante e determinadas a partir do gráfico de histerese, observando-se que possui um comportamento de um material magnético moderado devido ao perfil da curva de magnetização e valores de coercividade (~223kA/m). A condutividade elétrica das pastilhas foi obtida a partir de características de tensão pela corrente em função da temperatura. A dependência da condutividade elétrica com a temperatura das ferritas de aluminato de cobre com diferentes composições apresentou um comportamento semicondutor  e com o aumento da resistividade do material com o aumento do teor de alumínio ocorre devido à sua propriedade condutora. Também se observou que a magnetização de saturação diminui com o aumento da concentração de alumínio, apresentando comportamento de um material paramagnético e mole.

Referências

Chae, K. P., Choi, W. O., Lee, J.-G., Kang, B.-S., & Choi, S. H. (2013). Crystallographic and Magnetic Properties of Nickel Substituted Manganese Ferrites Synthesized by Sol-gel Method. Journal of Magnetics, 18(1), 21–25. https://doi.org/10.4283/jmag.2013.18.1.021

Dunitz, J. D., & Orgel, L. E. (1957). Electronic properties of transition-metal oxides—I. Journal of Physics and Chemistry of Solids, 3(1–2), 20–29. https://doi.org/10.1016/0022-3697(57)90043-4

Gabal, M. A., Abdel-Daiem, A. M., Al Angari, Y. M., & Ismail, I. M. (2013). Influence of Al-substitution on structural, electrical and magnetic properties of Mn–Zn ferrites nanopowders prepared via the sol–gel auto-combustion method. Polyhedron, 57, 105–111. https://doi.org/10.1016/j.poly.2013.04.027

Jonker, G. H. (1959). Analysis of the semiconducting properties of cobalt ferrite. Journal of Physics and Chemistry of Solids, 9(2), 165–175. https://doi.org/10.1016/0022-3697(59)90206-9

Mathew, D. S., & Juang, R.-S. (2007). An overview of the structure and magnetism of spinel ferrite nanoparticles and their synthesis in microemulsions. Chemical Engineering Journal, 129(1–3), 51–65. https://doi.org/10.1016/j.cej.2006.11.001

Oliveira, V. D. de, Rubinger, R. M., Silva, M. R. da, Oliveira, A. F., Rodrigues, G., & Ribeiro, V. A. dos S. (2016). Magnetic and Electrical Properties of MnxCu1-xFe2O4 Ferrite. Materials Research, 19(4), 786–790. https://doi.org/10.1590/1980-5373-mr-2015-0511

Parfenov, V. V., & Nazipov, R. A. (2002). Inorganic Materials, 38(1), 78–82. https://doi.org/10.1023/a:1013615930587

Raghavender, A. T., Shirsath, S. E., Pajic, D., Zadro, K., Milekovic, T., Jadhav, K. M., & Kumar, K. V. (2012). Effect of Al doping on the cation distribution in copper ferrite nanoparticles and their structural and magnetic properties. Journal of the Korean Physical Society, 61(4), 568–574. https://doi.org/10.3938/jkps.61.568

Raghavender, A. T., Shirsath, S. E., Pajic, D., Zadro, K., Milekovic, T., Jadhav, K. M., Kumar, K. V. (2020). Effect of Al Doping on the Cation Distribution in Copper Ferrite Nanoparticles and Their Structural and Magnetic Properties. Journal of the Korean Physical Society, 61 (4), 568- 574. 10.3938/jkps.61.568

Ribeiro, L. H., Oliveira, A. F., & Rubinger, R. M. (2021). Instrumentação para medidas de mobilidade eletrônica e concentração de portadores em amostras semicondutoras, pelo método de van der Pauw. Research, Society and Development, 10(6), e41310615229. https://doi.org/10.33448/rsd-v10i6.15229

Ribeiro, V. A. dos S., Pereira, A. C., Oliveira, A. F., Mendonça, C. de S. P., & Silva, M. R. da. (2016). Avaliação da microestrutura e das propriedades magnéticas de ferrita de cobre dopada com chumbo sinterizada com fase líquida. Matéria (Rio de Janeiro), 21(2), 330–341. https://doi.org/10.1590/s1517-707620160002.0032

Ribeiro, V. A. dos S., Rubinger, R. M., Oliveira, A. F., Mendonça, C. S. P., & Silva, M. R. da. (2016). Magnetic properties and potential barrier between crystallites model of MgGa2-xFexO4 ceramics. Cerâmica, 62(364), 365–369. https://doi.org/10.1590/0366-69132016623642006

Rubinger, C. P. L., Costa, L. C., Faez, R., Martins, C. R., & Rubinger, R. M. (2009). Hopping conduction on PAni/PSS blends. Synthetic Metals, 159(5–6), 523–527. https://doi.org/10.1016/j.synthmet.2008.11.012

Rubinger, R. M., Ribeiro, G. M., Oliveira, A. G. de, Albuquerque, H. A., Silva, R. L. da, Rubinger, C. P. L., Rodrigues, W. N., & Moreira, M. V. B. (2006). Temperature-dependent activation energy and variable range hopping in semi-insulating GaAs. Semiconductor Science and Technology, 21(12), 1681–1685. https://doi.org/10.1088/0268-1242/21/12/030

Sattar, A. A. (2004). Composition dependence of some physical, magnetic and electrical properties of Ga substituted Mn-ferrites. Journal of Materials Science, 39(2), 451–455. https://doi.org/10.1023/b:jmsc.0000011497.30763.bc

Skołyszewska, B., Tokarz, W., Przybylski, K., & Ka̧kol, Z. (2003). Preparation and magnetic properties of MgZn and MnZn ferrites. Physica C: Superconductivity, 387(1–2), 290–294. https://doi.org/10.1016/s0921-4534(03)00696-8

Smit, J. and Wijn, H.P.J. (1959) Ferrites. Philips Technical Library, Eindhoven, 150.

Sugimoto, m. (1977). Cubic-tetragonal transformation and magnetic properties in copper ferrites with excess Fe2O3. Le Journal de Physique Colloques, 38(C1), C1-117-C1-120. https://doi.org/10.1051/jphyscol:1977122

Šutka, A., & Gross, K. A. (2016). Spinel ferrite oxide semiconductor gas sensors. Sensors and Actuators B: Chemical, 222, 95–105. https://doi.org/10.1016/j.snb.2015.08.027

Surashe, V. K., Mahale, V., Keche, A. P., Alange, R. C., Aghav, P. C., Dorik, R. G. (2020). Structural and electrical properties of copper ferrite (CuFe2O4) NPs. Journal of Physics: Conference Series. 1644 (2020), 1-7. https://doi:10.1088/1742-6596/1644/1/012025

Tanaka, T., Chiba, M., Okimura, H., & Koizumi, Y. (1997). Jahn-Teller Effect of Cu-Ferrite Films by Solid Reaction. Le Journal de Physique IV, 07(C1), C1-501-C1-502. https://doi.org/10.1051/jp4:19971205

Ribeiro, V. A. S. R., Oliveira, A. F., Rubinger, R. M., Mendonça, C. S. P., Oliveira, V. D., Silva, M. R. (2019). Electrical and structural characterization of lead and copper ceramics. Tecnol. metal. mater. min., 16 (2), 284-289.

Downloads

Publicado

13/07/2021

Como Citar

RIBEIRO, V. A. dos S. .; OLIVEIRA, V. D. de .; RUBINGER, R. M. .; OLIVEIRA, A. F. .; MENDONÇA, C. S. P. . Síntese, caracterização magnética e elétrica da ferrita de aluminato de cobre . Research, Society and Development, [S. l.], v. 10, n. 8, p. e31210817314, 2021. DOI: 10.33448/rsd-v10i8.17314. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/17314. Acesso em: 22 nov. 2024.

Edição

Seção

Engenharias