Cálculos químicos quânticos e seus usos
DOI:
https://doi.org/10.33448/rsd-v10i8.17567Palavras-chave:
Teoria do funcional da densidade; Espectrometria de massas; Espectroscopia de infravermelho e Raman; Carbonização hidrotermal; Catálise heterogênea.Resumo
Neste trabalho, apresentamos estudos que utilizaram a química quântica como uma ferramenta de previsão comportamentos da química e da física molecular, que forneceram dados altamente precisos e quantitativos sobre sistemas moleculares. Iniciamos por rever a teoria da estrutura eletrônica baseada na função das ondas, enfatizando a hierarquia N-eletrônica da teoria dos pares-cluster e a hierarquia de um electrão de conjuntos de bases consistentes de correlação. Posteriormente, mostramos estudos realizados em diversas áreas da química em que os dados quânticos foram usados para estudar comportamentos de compostos em diversas áreas da química moderna. Uma grande vantagem do uso da química quântica computacional é a possibilidade de estudar mecanísticas que não são experimentalmente viáveis de serem executadas, mas os dados fornecidos por ela garantem grande confiabilidade dos dados apresentados. A química computacional se tornou uma ferramenta de grande utilidade na química moderna.
Referências
Al-Hossainy, A. F., Abdelaal, R. M., & El Sayed, W. N. (2021). Novel synthesis, structure characterization, DFT and investigation of the optical properties of cyanine dye/zinc oxide [4-CHMQI/ZnO] C nanocomposite thin film. Journal of Molecular Structure, 1224, 128989.
Alex, A., Harvey, S., Parsons, T., Pullen, F. S., Wright, P., & Riley, J.-A. (2009). Can density functional theory (DFT) be used as an aid to a deeper understanding of tandem mass spectrometric fragmentation pathways? Rapid Communications in Mass Spectrometry, 23(17), 2619–2627. https://doi.org/10.1002/rcm.4163
Almlöf, J., & Taylor, P. R. (1987). General contraction of Gaussian basis sets. I. Atomic natural orbitals for first‐and second‐row atoms. The Journal of Chemical Physics, 86(7), 4070–4077.
Almlöf, J., & Taylor, P. R. (1991). Atomic natural orbital (ANO) basis sets for quantum chemical calculations. Advances in Quantum Chemistry, 22, 301–373.
Almutairi, M. S., Zakaria, A. S., Ignasius, P. P., Al-Wabli, R. I., Joe, I. H., & Attia, M. I. (2018). Synthesis, spectroscopic investigations, DFT studies, molecular docking and antimicrobial potential of certain new indole-isatin molecular hybrids: Experimental and theoretical approaches. Journal of Molecular Structure, 1153, 333–345. https://doi.org/https://doi.org/10.1016/j.molstruc.2017.10.025
Alsheikh, A. A., Žídek, J., Krčma, F., Papp, P., Lacko, M., & Matejčík, Š. (2015). Fragmentation of methylphenylsilane and trimethylphenylsilane: A combined theoretical and experimental study. International Journal of Mass Spectrometry, 385, 1–12. https://doi.org/10.1016/j.ijms.2015.05.004
Antero, R. V. P., Alves, A. C. F., Ferreira Sales, P. D. T., de Oliveira, S. B., Ojala, S. A., & Brum, S. S. (2019). A new approach to obtain mesoporous-activated carbon via hydrothermal carbonization of Brazilian Cerrado biomass combined with physical activation for bisphenol-A removal. Chemical Engineering Communications, 206(11). https://doi.org/10.1080/00986445.2019.1601625
Bahrami, H., Farajmand, B., & Lakmehsari, M. S. (2018). Investigation of protonation and decomposition of tyrosine by ion mobility spectrometry and DFT calculations. International Journal of Mass Spectrometry, 430, 110–116.
Bakowies, D. (2007a). Accurate extrapolation of electron correlation energies from small basis sets. The Journal of Chemical Physics, 127(16), 164109.
Bakowies, D. (2007b). Extrapolation of electron correlation energies to finite and complete basis set targets. The Journal of Chemical Physics, 127(8), 84105.
Bardestani, R., Patience, G. S., & Kaliaguine, S. (2019). Experimental methods in chemical engineering: specific surface area and pore size distribution measurements—BET, BJH, and DFT. The Canadian Journal of Chemical Engineering, 97(11), 2781–2791. https://doi.org/https://doi.org/10.1002/cjce.23632
Barnes, L., Allouche, A.-R., Chambert, S., Schindler, B., & Compagnon, I. (2020). Ion spectroscopy of heterogeneous mixtures: IRMPD and DFT analysis of anomers and conformers of monosaccharides. International Journal of Mass Spectrometry, 447, 116235.
Bartlett, R. J. (1995). Modern electronic structure theory. Yarkony, DR, Ed, 2, 10471131.
Başakçılardan Kabakcı, S., & Baran, S. S. (2019). Hydrothermal carbonization of various lignocellulosics: Fuel characteristics of hydrochars and surface characteristics of activated hydrochars. Waste Management, 100, 259–268. https://doi.org/https://doi.org/10.1016/j.wasman.2019.09.021
Beć, K. B., Grabska, J., & Czarnecki, M. A. (2018). Spectra-structure correlations in NIR region: spectroscopic and anharmonic DFT study of n-hexanol, cyclohexanol and phenol. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 197, 176–184.
Beć, K. B., & Huck, C. W. (2019). Breakthrough Potential in Near-Infrared Spectroscopy: Spectra Simulation. A Review of Recent Developments . In Frontiers in Chemistry (Vol. 7, p. 48). https://www.frontiersin.org/article/10.3389/fchem.2019.00048
Ben Said, R., Hamed, A. I., Mahalel, U. A., Al-Ayed, A. S., Kowalczyk, M., Moldoch, J., Oleszek, W., & Stochmal, A. (2017). Tentative characterization of polyphenolic compounds in the male flowers of Phoenix dactylifera by liquid chromatography coupled with mass spectrometry and DFT. International Journal of Molecular Sciences, 18(3), 512.
Brown, A. B., McKeogh, B. J., Tompsett, G. A., Lewis, R., Deskins, N. A., & Timko, M. T. (2017). Structural analysis of hydrothermal char and its models by density functional theory simulation of vibrational spectroscopy. Carbon, 125, 614–629. https://doi.org/https://doi.org/10.1016/j.carbon.2017.09.051
Chen, J., Min, F., Liu, L., & Liu, C. (2019). Mechanism research on surface hydration of kaolinite, insights from DFT and MD simulations. Applied Surface Science, 476, 6–15.
Chen, J., Min, F., Liu, L., Liu, C., & Lu, F. (2017). Experimental investigation and DFT calculation of different amine/ammonium salts adsorption on kaolinite. Applied Surface Science, 419, 241–251.
Coolidge, A. S., & James, H. M. (1938). Wave functions and potential curves for excited h2. The Journal of Chemical Physics, 6(11), 730–734.
Damodaran, S. (2017). Food proteins: an overview. Food Proteins and Their Applications, 1–24.
Daniel Boese, A., Klopper, W., & Martin*, J. M. L. (2005). Anharmonic force fields and thermodynamic functions using density functional theory. Molecular Physics, 103(6–8), 863–876.
Ding, L., Wang, Z., Li, Y., Du, Y., Liu, H., & Guo, Y. (2012). A novel hydrochar and nickel composite for the electrochemical supercapacitor electrode material. Materials Letters, 74, 111–114. https://doi.org/https://doi.org/10.1016/j.matlet.2012.01.070
Ding, L., Zou, B., Li, Y., Liu, H., Wang, Z., Zhao, C., Su, Y., & Guo, Y. (2013). The production of hydrochar-based hierarchical porous carbons for use as electrochemical supercapacitor electrode materials. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 423, 104–111. https://doi.org/https://doi.org/10.1016/j.colsurfa.2013.02.003
Du, Z., Huang, C., Meng, J., Yuan, Y., Yin, Z., Feng, L., Liu, Y., & Zhang, L. (2020). Sorption of aromatic organophosphate flame retardants on thermally and hydrothermally produced biochars. Frontiers of Environmental Science & Engineering, 14(3), 43. https://doi.org/10.1007/s11783-020-1220-6
Dunning Jr, T. H. (1989). Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. The Journal of Chemical Physics, 90(2), 1007–1023.
Fan, Y., Liu, P.-F., Huang, Z.-Y., Jiang, T.-W., Yao, K.-L., & Han, R. (2015). Porous hollow carbon spheres for electrode material of supercapacitors and support material of dendritic Pt electrocatalyst. Journal of Power Sources, 280, 30–38. https://doi.org/https://doi.org/10.1016/j.jpowsour.2015.01.096
Ferrari, B. C., & Bennett, C. J. (2019). A Comparison of Medium-Sized Basis Sets for the Prediction of Geometries, Vibrational Frequencies, Infrared Intensities and Raman Activities for Water. Journal of Physics: Conference Series, 1290(1). https://doi.org/10.1088/1742-6596/1290/1/012013
Fonseca Guerra, C., Snijders, J. G., Te Velde, G., & Baerends, E. J. (1998). Towards an order-N DFT method. Theoretical Chemistry Accounts, 99(6), 391–403. https://doi.org/10.1007/s002140050353
Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Petersson, G. A., & Nakatsuji, H. (2016). Gaussian 16, Revision A. 03, Wallingford CT.
Futami, Y., Ozaki, Y., Hamada, Y., Wojcik, M. J., & Ozaki, Y. (2011). Solvent dependence of absorption intensities and wavenumbers of the fundamental and first overtone of NH stretching vibration of pyrrole studied by near-infrared/infrared spectroscopy and DFT calculations. The Journal of Physical Chemistry A, 115(7), 1194–1198.
Galán, O. A. L., & Carbajal-Franco, G. (2021). Energy profiles by DFT methods for CO and NO catalytic adsorption over ZnO surfaces. Catalysis Today, 360, 38–45. https://doi.org/https://doi.org/10.1016/j.cattod.2019.08.003
Gao, F., Shao, G., Qu, J., Lv, S., Li, Y., & Wu, M. (2015). Tailoring of porous and nitrogen-rich carbons derived from hydrochar for high-performance supercapacitor electrodes. Electrochimica Acta, 155, 201–208. https://doi.org/https://doi.org/10.1016/j.electacta.2014.12.069
Geerlings, P., De Proft, F., & Langenaeker, W. (2003). Conceptual Density Functional Theory. Chemical Reviews, 103(5), 1793–1874. https://doi.org/10.1021/cr990029p
Gómez, E. del V, Amaya-Roncancio, S., Avalle, L. B., Linares, D. H., & Gimenez, M. C. (2017). DFT study of adsorption and diffusion of atomic hydrogen on metal surfaces. Applied Surface Science, 420, 1–8.
Grabska, J., Beć, K. B., Ishigaki, M., Huck, C. W., & Ozaki, Y. (2018). NIR Spectra Simulations by Anharmonic DFT-Saturated and Unsaturated Long-Chain Fatty Acids. Journal of Physical Chemistry B, 122(27), 6931–6944. https://doi.org/10.1021/acs.jpcb.8b04862
Grabska, J., Beć, K. B., Ozaki, Y., & Huck, C. W. (2017). Temperature drift of conformational equilibria of butyl alcohols studied by near-infrared spectroscopy and fully anharmonic DFT. The Journal of Physical Chemistry A, 121(9), 1950–1961.
Guangzhi, Y., Jinyu, Y., Yuhua, Y., Zhihong, T., DengGuang, Y., & Junhe, Y. (2017). Preparation and CO 2 adsorption properties of porous carbon from camphor leaves by hydrothermal carbonization and sequential potassium hydroxide activation. RSC Advances, 7(7), 4152–4160.
Hanwell, M. D., Curtis, D. E., Lonie, D. C., Vandermeersch, T., Zurek, E., & Hutchison, G. R. (2012). Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. Journal of Cheminformatics, 4(1), 17. https://doi.org/10.1186/1758-2946-4-17
He, C., Giannis, A., & Wang, J.-Y. (2013). Conversion of sewage sludge to clean solid fuel using hydrothermal carbonization: Hydrochar fuel characteristics and combustion behavior. Applied Energy, 111, 257–266. https://doi.org/https://doi.org/10.1016/j.apenergy.2013.04.084
Heilmann, S. M., Jader, L. R., Sadowsky, M. J., Schendel, F. J., von Keitz, M. G., & Valentas, K. J. (2011). Hydrothermal carbonization of distiller’s grains. Biomass and Bioenergy, 35(7), 2526–2533. https://doi.org/https://doi.org/10.1016/j.biombioe.2011.02.022
Helgaker, T., Jorgensen, P., & Olsen, J. (2014). Molecular electronic-structure theory. John Wiley & Sons.
Helgaker, T., Klopper, W., & Tew, D. P. (2008). Quantitative quantum chemistry. Molecular Physics, 106(16–18), 2107–2143. https://doi.org/10.1080/00268970802258591
Hoffmann, J. M., Sadhoe, A. K., & Mooibroek, T. J. (2020). π-Hole Interactions with Various Nitro Compounds Relevant for Medicine: DFT Calculations and Surveys of the Cambridge Structural Database (CSD) and the Protein Data Bank (PDB). Synthesis, 52(04), 521–528.
Huck, C. W. (2017). Selected latest applications of molecular spectroscopy in natural product analysis. Phytochemistry Letters, 20, 491–498.
Ibrahim, S. M., & Al-Hossainy, A. F. (2021). Synthesis, structural characterization, DFT, kinetics and mechanism of oxidation of bromothymol blue: application to textile industrial wastewater treatment. Chemical Papers, 75(1), 297–309. https://doi.org/10.1007/s11696-020-01299-8
Imamura, Y., & Scuseria, G. E. (2003). A new correlation functional based on a transcorrelated Hamiltonian. The Journal of Chemical Physics, 118(6), 2464–2469.
Jain, A., Balasubramanian, R., & Srinivasan, M. P. (2016). Hydrothermal conversion of biomass waste to activated carbon with high porosity: A review. Chemical Engineering Journal, 283, 789–805. https://doi.org/https://doi.org/10.1016/j.cej.2015.08.014
Jamaludin, N., Tan, T. L., Zaman, A. S. K., Sadrolhosseini, A. R., & Rashid, S. A. (2020). Empty Fruit Bunch Biochar. Materials, 13, 33556.
James, H. M., & Coolidge, A. S. (1936). On the ground state of lithium. Physical Review, 49(9), 688.
Ji, Y., Yang, X., Ji, Z., Zhu, L., Ma, N., Chen, D., Jia, X., Tang, J., & Cao, Y. (2020). DFT-Calculated IR Spectrum Amide I, II, and III Band Contributions of N-Methylacetamide Fine Components. ACS Omega, 5(15), 8572–8578. https://doi.org/10.1021/acsomega.9b04421
Jinnouchi, R., & Asahi, R. (2017). Predicting Catalytic Activity of Nanoparticles by a DFT-Aided Machine-Learning Algorithm. The Journal of Physical Chemistry Letters, 8(17), 4279–4283. https://doi.org/10.1021/acs.jpclett.7b02010
Kenny, P. T. M., Nomoto, K., & Orlando, R. (1992). Fragmentation studies of peptides: The formation of Y ions. Rapid Communications in Mass Spectrometry, 6(2), 95–97. https://doi.org/10.1002/rcm.1290060205
Khattab, M., & Al‐Karmalawy, A. A. (2021). Revisiting Activity of Some Nocodazole Analogues as a Potential Anticancer Drugs Using Molecular Docking and DFT Calculations. Frontiers in Chemistry, 9(March), 1–10. https://doi.org/10.3389/fchem.2021.628398
Köche, J. C. (2016). Fundamentos de metodologia científica. Editora Vozes.
Kutzelnigg, W., & Morgan III, J. D. (1992). Erratum: Rates of convergence of the partial‐wave expansions of atomic correlation energies [J. Chem. Phys. 96, 4484 (1992)]. The Journal of Chemical Physics, 97(11), 8821.
Lee, J., Kim, Y., Kim, W. Y., & Oh, H. Bin. (2020). Graph theory-based reaction pathway searches and DFT calculations for the mechanism studies of free radical-initiated peptide sequencing mass spectrometry (FRIPS MS): a model gas-phase reaction of GGR tri-peptide. Physical Chemistry Chemical Physics, 22(9), 5057–5069.
Lee, S.-S., Lee, J., Oh, J. H., Park, S., Hong, Y., Min, B. K., Lee, H. H. L., Kim, H. I., Kong, X., & Lee, S. (2018). Chiral differentiation of D-and L-isoleucine using permethylated β-cyclodextrin: Infrared multiple photon dissociation spectroscopy, ion-mobility mass spectrometry, and DFT calculations. Physical Chemistry Chemical Physics, 20(48), 30428–30436.
Li, R., Lou, Y., Xu, Y., Ma, G., Liao, B.-Q., Shen, L., & Lin, H. (2019). Effects of surface morphology on alginate adhesion: Molecular insights into membrane fouling based on XDLVO and DFT analysis. Chemosphere, 233, 373–380. https://doi.org/https://doi.org/10.1016/j.chemosphere.2019.05.262
Li, X., Zhang, R., Zhu, X., & Zhang, L. (2020). Effect of N-doping on the catalytic decomposition of hydrogen iodide over activated carbon: Experimental and DFT studies. International Journal of Hydrogen Energy, 45(7), 4511–4520.
Lin, Y., Ma, X., Peng, X., Hu, S., Yu, Z., & Fang, S. (2015). Effect of hydrothermal carbonization temperature on combustion behavior of hydrochar fuel from paper sludge. Applied Thermal Engineering, 91, 574–582. https://doi.org/https://doi.org/10.1016/j.applthermaleng.2015.08.064
Löwdin, P.-O. (1955). Quantum theory of many-particle systems. I. Physical interpretations by means of density matrices, natural spin-orbitals, and convergence problems in the method of configurational interaction. Physical Review, 97(6), 1474.
Maclot, S., Piekarski, D. G., Domaracka, A., Méry, A., Vizcaino, V., Adoui, L., Martín, F., Alcamí, M., Huber, B. A., Rousseau, P., & Díaz-Tendero, S. (2013). Dynamics of Glycine Dications in the Gas Phase: Ultrafast Intramolecular Hydrogen Migration versus Coulomb Repulsion. The Journal of Physical Chemistry Letters, 4(22), 3903–3909. https://doi.org/10.1021/jz4020234
Mäkelä, M., Benavente, V., & Fullana, A. (2015). Hydrothermal carbonization of lignocellulosic biomass: Effect of process conditions on hydrochar properties. Applied Energy, 155, 576–584. https://doi.org/https://doi.org/10.1016/j.apenergy.2015.06.022
Modesto‐Costa, L., Martinez, S. T., Pinto, A. C., Vessecchi, R., & Borges Jr, I. (2018). Elucidating the mass spectrum of the retronecine alkaloid using DFT calculations. Journal of Mass Spectrometry, 53(10), 934–941.
Morris, R. E., & Wheatley, P. S. (2008). Gas Storage in Nanoporous Materials. Angewandte Chemie International Edition, 47(27), 4966–4981. https://doi.org/10.1002/anie.200703934
Naseem, S., Khalid, M., Tahir, M. N., Halim, M. A., Braga, A. A. C., Naseer, M. M., & Shafiq, Z. (2017). Synthesis, structural, DFT studies, docking and antibacterial activity of a xanthene based hydrazone ligand. Journal of Molecular Structure, 1143(November), 235–244. https://doi.org/10.1016/j.molstruc.2017.04.093
Neelakantan, M. A., Balamurugan, K., Balakrishnan, C., & Subha, L. (2018). Interaction of amino acid Schiff base metal complexes with DNA/BSA protein and antibacterial activity: spectral studies, DFT calculations and molecular docking simulations. Applied Organometallic Chemistry, 32(4), e4259.
Ozaki, Y., & Kawata, S. (1996). Near-infrared spectroscopy. Gakkai Shuppan Center, Tokyo, Japan.
Pereira, A. S., Shitsuka, D. M., Parreira, F. J., & Shitsuka, R. (2018). Metodologia da pesquisa científica. UFSM. Disponível em: https://repositorio. ufsm. br/bitstream/handle
Perras, F. A., Marion, D., Boisbouvier, J., Bryce, D. L., & Plevin, M. J. (2017). Observation of CH⋅⋅⋅ π Interactions between Methyl and Carbonyl Groups in Proteins. Angewandte Chemie, 129(26), 7672–7675.
Polyansky, O. L., Császár, A. G., Shirin, S. V, Zobov, N. F., Barletta, P., Tennyson, J., Schwenke, D. W., & Knowles, P. J. (2003). High-accuracy ab initio rotation-vibration transitions for water. Science, 299(5606), 539–542.
Pople, J. A., Head‐Gordon, M., & Raghavachari, K. (1987). Quadratic configuration interaction. A general technique for determining electron correlation energies. The Journal of Chemical Physics, 87(10), 5968–5975.
Prashantha, A. G., Ali, R. A. S., & Keshavayya, J. (2021). Synthesis, spectral characterization, DFT studies and antimicrobial activities of amino-methylbenzoic acid based azo dyes. Inorganic Chemistry Communications, 127, 108392.
Rad, A. S., Ardjmand, M., Esfahani, M. R., & Khodashenas, B. (2021). DFT calculations towards the geometry optimization, electronic structure, infrared spectroscopy and UV–vis analyses of Favipiravir adsorption on the first-row transition metals doped fullerenes; a new strategy for COVID-19 therapy. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 247, 119082.
Shahana, M. F., & Yardily, A. (2020). Synthesis, spectral characterization, DFT, and docking studies of (4-amino-2-(phenylamino) thiazol-5-yl)(thiophene-2-yl) methanone and (4-amino-2-(4-chlorophenyl) amino) thiazol-5-yl)(thiophene-2-yl) methanone. Journal of Structural Chemistry, 61(9), 1367–1379.
Shao, P., Pei, J., Tang, H., Yu, S., Yang, L., Shi, H., Yu, K., Zhang, K., & Luo, X. (2021). Defect-rich porous carbon with anti-interference capability for adsorption of bisphenol A via long-range hydrophobic interaction synergized with short-range dispersion force. Journal of Hazardous Materials, 403(July 2020), 123705. https://doi.org/10.1016/j.jhazmat.2020.123705
Sharma, Sanjeev, & Chun, S. E. (2019). New high-yield method for the production of activated carbon via hydrothermal carbonization (HTC) processing of carbohydrates. Journal of Electrochemical Science and Technology, 10(4), 387–393. https://doi.org/10.33961/jecst.2019.00059
Sharma, Shikha, Dumpalan, R. M. R., & Rawat, N. (2020). Experimental and DFT studies on complexation of uranyl with N-(2-Hydroxyethyl) iminodiacetic acid in aqueous medium. Inorganica Chimica Acta, 508, 119653.
Shi, L., Meng, S., Jungsuttiwong, S., Namuangruk, S., Lu, Z.-H., Li, L., Zhang, R., Feng, G., Qing, S., & Gao, Z. (2020). High coverage H2O adsorption on CuAl2O4 surface: A DFT study. Applied Surface Science, 507, 145162.
Sibari, A., Kerrami, Z., Benaissa, M., & Kara, A. (2021). Coverage-dependent adsorption of small gas molecules on black phosphorene: a DFT study. Surface Science, 710, 121860. https://doi.org/https://doi.org/10.1016/j.susc.2021.121860
Soleimani, F., Karimi, R., & Gharib, F. (2016). Thermodynamic Studies on Protonation Constant of Acyclovir at Different Ionic Strengths. Journal of Solution Chemistry, 45(6), 920–931. https://doi.org/10.1007/s10953-016-0478-6
Song, X., Ning, P., Li, K., Sun, X., Wang, C., & Sun, L. (2018). Hydrogen transfer effect and reaction mechanism for catalytic hydrolysis of HCN in ionic liquids: A density functional theory study. Chemical Engineering Journal, 348, 630–636. https://doi.org/https://doi.org/10.1016/j.cej.2018.05.056
Szalewicz, K., Jeziorski, B., Monkhorst, H. J., & Zabolitzky, J. G. (1982). A new functional for variational calculation of atomic and molecular second-order correlation energies. Chemical Physics Letters, 91(3), 169–172.
Takahashi, H., & Yabushita, S. (2013). Theoretical analysis of weak adjacent substituent effect on the overtone intensities of XH (X= C, O) stretching vibrations. The Journal of Physical Chemistry A, 117(26), 5491–5502.
Thomas, R., Hossain, M., Mary, Y. S., Resmi, K. S., Armaković, S., Armaković, S. J., Nanda, A. K., Ranjan, V. K., Vijayakumar, G., & Van Alsenoy, C. (2018). Spectroscopic analysis and molecular docking of imidazole derivatives and investigation of its reactive properties by DFT and molecular dynamics simulations. Journal of Molecular Structure, 1158, 156–175. https://doi.org/https://doi.org/10.1016/j.molstruc.2018.01.021
Titirici, M.-M., Thomas, A., & Antonietti, M. (2007). Back in the black: hydrothermal carbonization of plant material as an efficient chemical process to treat the CO2 problem? New Journal of Chemistry, 31(6), 787–789. https://doi.org/10.1039/B616045J
Vessecchi, R., da Silva Borges, L., da Silva Emery, F., & Lopes, N. P. (2017). Understanding the fragmentation mechanisms of methoxy-, mesyl-, and tosyl-lapachol derivatives by computational chemistry and mass spectrometry analysis. International Journal of Mass Spectrometry, 418, 92–100. https://doi.org/10.1016/j.ijms.2016.11.012
Wang, D., Peng, Y., Yang, Q., Xiong, S., Li, J., & Crittenden, J. (2018). Performance of Modified LaxSr1–xMnO3 Perovskite Catalysts for NH3 Oxidation: TPD, DFT, and Kinetic Studies. Environmental Science & Technology, 52(13), 7443–7449. https://doi.org/10.1021/acs.est.8b01352
Wu, J., Yang, J., Huang, G., Xu, C., & Lin, B. (2020). Hydrothermal carbonization synthesis of cassava slag biochar with excellent adsorption performance for Rhodamine B. Journal of Cleaner Production, 251, 119717. https://doi.org/https://doi.org/10.1016/j.jclepro.2019.119717
Xiao, L.-P., Shi, Z.-J., Xu, F., & Sun, R.-C. (2012). Hydrothermal carbonization of lignocellulosic biomass. Bioresource Technology, 118, 619–623. https://doi.org/https://doi.org/10.1016/j.biortech.2012.05.060
Yang, S., Lei, G., Xu, H., Xu, B., Li, H., Lan, Z., Wang, Z., & Gu, H. (2019). A DFT study of CO adsorption on the pristine, defective, In-doped and Sb-doped graphene and the effect of applied electric field. Applied Surface Science, 480, 205–211.
Zhou, L., Yang, Y., Chen, J., Qiu, R., & Yao, Y. (2021). CO and H2 adsorption on Au-Ni bimetallic surfaces: a combined experimental and DFT theoretical study. Surface Science, 121892.
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2021 Paulo de Tarso Ferreira Sales; Katia Maria de Souza; Alyne Gonçalves Bezerra; Satu Anneli Ojala; Sérgio Botelho de Oliveira; Maria Teresa Freitas Bara
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Autores que publicam nesta revista concordam com os seguintes termos:
1) Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
2) Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
3) Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado.