Ensino de agentes inteligentes por meio de problemas em jogos
DOI:
https://doi.org/10.33448/rsd-v9i1.1793Palavras-chave:
Aprendizagem Baseada em Problemas; Agentes Inteligentes; Jogos; Estratégias de Busca; Algoritmos Genéticos; Redes Neurais Artificiais.Resumo
O ensino de agentes inteligentes, apresentado neste estudo, foi realizado por meio do método de Aprendizagem Baseada em Problemas. O jogo Pac-Man foi selecionado como estudo de caso. O processo de aprendizado construtivo foi executado mediante três etapas, sendo elas: (i) a implementação de agentes básicos, com objetivo apenas de completar o percurso no mapa; (ii) a implementação de agentes reais, considerando a existência de fantasmas; e, por fim, (iii) a implementação de agentes inteligentes com capacidade de aprendizado. Como parte do processo de construção do conhecimento, cada novo agente proposto pelo discente foi criado com a finalidade de solucionar problemas encontrados nas análises de desempenho de agentes anteriores. Na primeira etapa de desenvolvimento foi observada uma melhora de 33,45% no desempenho do Agente 1 para o Agente 6. Na segunda etapa, considerando o jogo real, o Agente 8 apresentou incremento de desempenho de 20,49% quando comparado ao Agente 7. Na terceira etapa, foram utilizadas redes neurais artificiais e algoritmos genéticos, o que permitiu criar um agente capaz de aprender e completar o mapa sozinho. Assim, foi possível comprovar que as técnicas selecionadas mostraram-se eficientes ao melhorar o nível de inteligência dos agentes propostos para o jogo em questão. Além disso, o emprego deste método de ensino resultou em um maior envolvimento do discente com a disciplina de Inteligência Artificial, favorecendo o domínio deste aluno em técnicas de construção de agentes inteligentes, bem como contribuindo para maior interesse do mesmo por esta área de estudo.
Referências
Arzt, S. (2016). Deep learning cars [Site]. Acesso em 20 de maio, em https://arztsamuel.github.io/ en/projects/unity/deepCars/deepCars.html
Barone, D. A. C. & Silveira, S. R. (1998). Jogos educativos computadorizados utilizando a abordagem de algoritmos genéticos. Congresso da Rede Iberoamericana de Informática na Educação, Brasília, DF, Brasil.
Bastos, R. & Jaques, P. (2010). Antares, um sistema web de consulta de rotas de ônibus como serviço público. Revista Brasileira de Computação Aplicada, 2(1), 41–56.
Catarina, A. S. & Bach, S. L. (2003). Estudo do efeito dos parâmetros genéticos sobre a solução otimizada e sobre o tempo de convergência em algoritmos genéticos com codificações binária e real. Acta Scientiarum. Technology, 25(2), 147–152.
Costa, N. M. S. & Netto, J. F. M. (2009). Desenvolvimento de um jogo educacional multiusuário usando bluetooth. Relatório de Iniciação Científica do Programa PIBIC 2008–2009, Universidade Federal do Amazonas, UFAM, Brasil.
Cormen, T. H.; Leiserson, C. E.; Rivest, R. L. & Stein, C. (2009). Introduction to Algorithms (3rd ed). Cambridge, Massachusetts: The MIT Press.
Crocomo, M. K (2008). Um algoritmo evolutivo para aprendizado on-line em jogos eletrônicos. (Dissertação de mestrado). Instituto de Ciências Matemáticas e de Computação – ICMC-USP, São Carlos, SP, Brasil.
Darwin, C. (1859). On the Origin of Species by Means of Natural Selection. Murray, London.
Deza, M. M. & Deza, E. (2016). Encyclopedia of Distances (4th ed.). Springer-Verlag.
Ficheman, I. K.; Assis, G. A.; Corrêa, A. G. D.; Netto, M. L. & Lopes, R. D. (2006). Educatrans: um jogo para educação no trânsito. Brazilian Symposium on Computers in Education (Simpósio Brasileiro de Informática na Educação – SBIE), 19–21, UNB/UCB, Brasília, DF, Brasil, XVII SBIE.
Gallagher, M. & Rayan, A. (2003). Learning to play pac-man: An evolutionary, ruse-based approach. The 2003 Congress on Evolutionary Computation, CEC, Camberra, ACT, Australia. doi:10.1109/CEC.2003.1299397
Goldberg, D. E. (1989). Genetic Algorithms in Search, Optimization and Machine Learning. MA: Addison-Wesley Reading.
Grando, A. & Tarouco, L. M. R. (2008). O uso de jogos educacionais do tipo rpg na educação. CINTED-UFRGS, Revista Novas Tecnologias na Educação, vol. 6, n. 1. doi: https://doi.org/10.22456/1679-1916.14403
Haykin, S. S. (2001). Redes Neurais - Princípios e Prática (2nd ed.). Bookman.
Marquardt, D. W. (1963). An algorithm for least-squares estimation of non-linear parameters. Journal of the Society for Industrial and Applied Mathematics, 11(2), 431–441. doi:10.1137/0111030
Mitchell, M. (1996). An Introduction to Genetic Algorithms. Cambridge. MA: The MIT Press.
Mitchell, T. (1997). Machine Learning. McGraw Hill Higher Education.
Oliveira, F. F.; Piteri, M. A. & Menequette, M. (2014). Desenvolvimento de uma plataforma de software para a modelagem digital de terrenos baseada em tin. Boletim de Ciências Geodésicas, Revista UFPR, Curitiba, PR, Brasil, 20(1), 117-131. doi: 10.1590/S1982-21702014000100008
Patel, A. (2018). Pathfinding for tower defense cars [Site]. Acesso em 01 de novembro, em www.redblobgames.com/pathfinding/tower-defense/.
Pinheiro, E.; Kubo, C. C. ; Rangel, M. S. ; Arcari, T. A. & Dias, C. G. (2009). Navegação autônoma de um agente inteligente: Um estudo comparativo usando lógica fuzzy e algoritmo de busca a*. Exacta, São Paulo, SP, Brasil, 7(1), 87–98. doi: 10.5585/exacta.v7i1.1531
Rigo Jr., L. O. (2005). Evolução de autômatos celulares para a previsão de séries temporais correlacionadas. (Dissertação de mestrado). Programa de Engenharia de Sistemas e Computação / COPPE - UFRJ, Rio de Janeiro, RJ, Brasil.
Ribeiro, L. M. P. (2008). Otimização e dimensionamento de treliças panas de madeira empregando o método dos algoritmos genéticos. (Dissertação de mestrado). Programa de Engenharia Civil, Universidade Federal de Uberlândia, Uberlândia, MG, Brasil.
Rumelhart, D. E.; Hinton, G. E. & Williams, R. J. (1986). Learning representations by back-propagating errors. Nature, 323(6088), 533–536.
Russell, S. J. & Norvig, P. (2009). Artificial intelligence: a modern approach (3rd ed.). Pearson.
Seidel, I. (2015). Inteligência artificial com dinossauro da google [Video]. Acesso em 20 de maio, em https://www.youtube.com/watch?v=P7XHzqZjXQs&t=71s
Silva, A. B. D.; Bispo, A. C. K. A.; Rodriguez, D. G. & Vasquez, F. I. F. (2018). Problem-based learning: A proposal for structuring pbl and its implications for learning among students in an undergraduate management degree program. REGE Revista de Gestão, 25(2), 160–177. doi: 10.1108/REGE-03-2018-030
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Autores que publicam nesta revista concordam com os seguintes termos:
1) Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
2) Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
3) Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado.