Comparação entre o desempenho de crescimento em dois sistemas silvipastoris compostos por árvores, arbusto perene de ciclo curto, uma forrageira e gado
DOI:
https://doi.org/10.33448/rsd-v10i10.18318Palavras-chave:
Melhoramento genético; Poder calorífico superior; Incremento médio anual; Sistemas de plantio; Propriedades da madeira.Resumo
Objetivamos determinar o desempenho de dois sistemas silvipastoris com 20 anos de idade compreendendo duas espécies madeireiras, uma palmeira, um arbusto perene de vida curta, uma forrageira e gado; e investigar características das fibras e algumas propriedades físicas, mecânicas e energéticas de Myracrodruon urundeuva e Peltophorum dubium. O primeiro sistema é denominado MP com duas árvores madeireiras e o segundo é denominado MPS com duas árvores madeireiras e uma palmeira. Os sistemas estudados mostraram que foi possível combinar com sucesso espécies de rápido crescimento, animais, forrageiras e espécies arbóreas lenhosas, com um ciclo de produção de mais de 50 anos de diferentes bens e serviços (por exemplo, ornamentais, palmitos, paisagismo, frutas, sementes, pasto apícola, carne e madeira). A altura, diâmetro e volume das árvores de M. urundeuva no sistema MP foram maiores do que no sistema MPS, enquanto nenhuma diferença entre os sistemas foi observada para P. dubium. Em comparação, o crescimento e o volume em P. dubium foram maiores do que em M. urundeuva. Para as propriedades da madeira, foi demonstrado que ambos os sistemas podem ser usados com sucesso, mas o sistema MPS apresentou melhor desempenho do que o sistema MP, no objetivo de produção de madeira de alta resistência mecânica e poder calorífico. Além disso, o sistema consorciado MPS pode render mais bens e serviços do que o sistema MP, ambos os sistemas trazem retornos de curto prazo (semente de feijão, forragem, pasto), médio prazo (forragem, palmeira, pasto, madeira) e retornos financeiros de longo prazo (madeira).
Referências
ACGB. Associação dos Criadores de Guzerá do Brasil (2020). A Consolidação do Guzerá no Brasil http://www.guzera.org.br/novo/?tela,12
Alves, F. V., Laura, V. A., & Almeida, R.G. (2015). Sistemas agroflorestais: A agropecuária sustentável. Brasília: Embrapa-Gado de corte.
Alvim, J. M., Botrel, M. A., & Xavier, D. F. (2002). As principais espécies de Brachiaria utilizadas no país. Juiz de Fora: Embrapa-Gado de Leite.
ASTM - American Society for Testing and Materials (1998). D5865-98: standard test method for gross calorific value of coal and coke. Philadelphia: ASTM.
ABNT - Associação Brasileira de Normas Técnicas (1997). NBR 7190/97: Projeto de estruturas de madeira. Rio de Janeiro: ABNT.
Atangana, A. R., Khasa, D. P., Chang, S. X., & Degrande, A (2014). Tropical Agroforestry. Dordrecht Heidelberg: New York.
Berlyn, G. P.; & Miksche, J. P. (1976). Botanical microtechnique and cytochemistry. The Iowa University Press: Iowa.
Brazilian Forum on Sustainable Agriculture. (2019). Mato Grosso do Sul caminha para se tornar referência nacional na agricultura sustentável http://www.ms.gov.br/mato-grosso-do-sul-caminha-para-se-tornar-referencia-nacional-na-agricultura-sustentavel.
Calonego, F. W., Severo, E .T. D., & Assis, P. P. (2005). Mensuração do comprimento das fibras para a determinação da madeira juvenil em Eucalyptus citriodora. Scientia Forestalis, 68, 113-121.
Cambuim, J. (2013). Sistema silvipastoril com Myracrodruon urundeuva Fr. All. como alternativa de sustentabilidade. (Dissertação de mestrado), Universidade Estadual Paulista, Ilha Solteira.
Cambuim, J. (2017). Fragmentos florestais e testes de progênies: opções para a coleta de sementes em espécies arbóreas nativas do Cerrado no Bolsão Sul-Mato-Grossense. (Tese de doutorado), Universidade Estadual Paulista, Ilha Solteira.
Campbell, H. F. (1999) Forestry Economics Principles and Practice. In: Discussion Papers Series, 258. Queensland. Proceedings… Queensland, Australia: University Queensland, p.1-12.
Campos, O. F., & Miranda, J. E. C. O produtor pergunta, a Embrapa responde (302.). Juiz de Fora: Embrapa-Gado de Leite.
Carvalho, P. E. R. (2003). Espécies arbóreas nativas: silvicultura e usos. Brasília: Embrapa-Informação Tecnológica.
Cascaes, M. F. (2008). A comunidade de abelhas (Hymenoptera, Apoidea) e flores visitadas em um fragmento de mata atlântica, no município de Maracajá, Santa Catarina (Dissertação de mestrado), Universidade do Extremo Sul Catarinense, Criciúma.
Chave, J., Coomes, D., Jansen, S., Lewis, S. L., Swenson, N. G., & Zanne, A. E. (2009). Towards a worldwide wood economics spectrum. Ecology Letters, 12, 351-366. http://dx.doi: 10.1111/j.1461-0248.2009.01285.x.
Crispim, S. M. A., & Branco, O. D. (2002). Aspectos Gerais das Braquiárias e suas Caracteristicas na sub-região da Nhecolândia, Pantanal, MS. Corumbá. Embrapa Pantanal.
Empresa Brasileira de Pesquisa Agropecuária - EMBRAPA (2010). Monitoramento da fenologia vegetativa e reprodutiva de espécies nativas dos biomas brasileiros: Jerivá. Colombo, Embrapa Florestas.
Equipe Jornalística da Revista da Madeira - REMADE. (2007). Espécies tropicais promissoras. Revista da madeira, 18, 98-106. Recuperado em 09 de janeiro de 2020, de http://www.remade.com.br/br/revistadamadeira_materia.php?num=1164&subje.
Eufrade-Júnior, H. J., Ohto, J. M., Silva, L. L., Lara Palma, H. A., & Ballarin, A. W. (2015). Potential of rubberwood (Hevea brasiliensis) for structural use after the period of latex extraction: a case study in Brazil. Journal Wood Science 61, 384-390. https://doi.org/10.1007/s10086-015-1478-7
Fan, Z. X., Zhang, S. B., Hao, G. Y., Ferry, S. J. W., & Cao, K. F. (2012). Hydraulic conductivity traits predict growth rates and adult stature of 40 Asian tropical tree species better than wood density. Journal Ecology v.100, 732-741. https://doi.org/10.1111/j.1365-2745.2011.01939.x.
Florence, R. G. (1996). Ecology and silviculture of eucalypt forests. Clayton: CSIRO-Publishing.
Flores, T., Alvares, C. A., Souza, V. C., & Stape, J. L. (2016). Eucalyptus no Brazil: zoneamento climático e guia para identificação. Piracicaba: IPEF.
Florsheim, S. M. B., Couto, H. T. Z., Lima, I. L., & Longui, E. L. (2009). Variação nas dimensões dos elementos anatômicos da madeira de Eucalyptus dunnii aos sete anos de idade. Revista do Instituto Florestal, 21(1), 79-91.
Food and Agriculture Organization of the United Nations- FAO. (2016) Cajanus cajan (L.) Mill sp http://www.fao.org/ag/agp/agpc/doc/gbase/data/pf000150.html
Freitas, M. L. M. (1999). Variação genética em progênies de aroeira (Myracrodruon urundeuva Fr.). All. Anacardiaceae em diferentes sistemas de plantio. (Dissertação de mestrado), Universidade Estadual Paulista, Ilha Solteira.
Freitas, M. L. M., Moraes, M .L. T., & Buzetti., S. (2002). Variação genética em progênies de Myracrodruon urundeuva Fr. All. em diferentes sistemas de plantio. Revista do Instituto Florestal, 14 (2), 133-141.
Galão, A. T. D. (2017). Incremento médio anual, anatomia e propriedades físicas e mecânicas da madeira de Peltophorum dubium (Spreng.) Taub. com sementes de duas procedências (Dissertação de mestrado). Universidade Estadual Paulista, Botucatu.
Glass, S., & Zelinka, S. L (2010). Moisture relations and physical properties of wood. In Ross, R. (Ed). Wood handbook - wood as an engineering material. 100th ed. Madison: U.S. Department of Agriculture, Forest Service, Forest Products Laboratory, pp. 1-19.
Gurgel-Garrido, L. M. A., Siqueira, A. C. M. F., Cruz, S. F., Romanelli, R. C., Ettori, L.G., Crestana, C. S. M., Silva, A. A., Morais, E., Zanatto, A. C. S., & Sato, A. S. (1997). Programa de melhoramento genético florestal do Instituto Florestal. IF Série Registros, 18, 1-53.
Higuchi. N. (1978). Tabelas de volume para povoamentos nativos de canafístula (Leguminosae), cedro (Meliaceae), pau marfim (Rutaceae) e canelas (Lauraceae), no extremo oeste paranaense. (Dissertação de mestrado). Universidade Federal do Paraná.
Huang, W., Luukkanen, O., Johanson, S., Kaarakka, V., Räisänen, S., & Vihemäki, H. (2002). Agroforestry for biodiversity conservation of nature reserves: functional group identification and analysis. Agroforestry System, 55, 65-72. https://doi.org/10.1023/A:1020284225155
IAWA. International Association of Wood Anatomists. (1989). list of microscopic features for hardwood identification. Iawa Journal, 10 (3), 219-332. https://doi.10.1163/22941932-90000496
Jacobson, M. (2008). Forest Finance 8: To Cut or Not to Cut: Tree Value and Deciding When to Harvest Timber https://extension.psu.edu/forest-finance-8-to-cut-or-not-cut-deciding-when-to-harvest-timber
Keller-Grein, G., Maas, B. L.,& Hanson, J. (1996). Natural variation in Brachiaria and existing germplasm collections. Brachiaria: biology, agronomy, and improvement https://cgspace.cgiar.org/handle/10568/82023
Khasanah, N., Perdana, A., Rahmanullah, A., Manurung, G., Roshetko, J. M., & Noordwijk, M. (2015). Intercropping teak (Tectona grandis) and maize (Zea mays): bioeconomic trade-off analysis of agroforestry management practices in Gunungkidul, West Java. Agroforestry Systems, 89, 1019-1033. https://doi.org/10.1007/s10457-015-9832-8
Kinupp, V., & Lorenzi, H. (2014). Plantas alimentícias não convencionais (PANC) no Brasil: guia de identificação, aspectos nutricionais e receitas ilustradas. Instituto Plantarum de Estudos da Flora: São Paulo.
Kunstler, G., Falster, D., Coomes, D. A., Hui, F., Kooyman, D., Laughlin, D. C., Pooter, L., Vanderwell, M., Vieilldent, G., Wrigth, J., Aiba, M., Baraloto, C., Caspersen, J., Cornelissen, J. H. C., Gourlet-Fleury, S., Hanewinkel, M., Herault, B., Kattge, J., Kurokawa, H., Onoda, Y., Peñuelas, J., Poorter, H., Uriarte, M., Richardson, S., Ruiz-Benito, P., Fang-Sun, I., Ståhl, G.,Swenson, N.G., Thompson, J., Westerlund, B., Wirth, C., Zavala, M. A., Zeng, H., Zimmerman, K., Niklaus, E. Z., & Westoby, M. (2016). Plant functional traits have globally consistent effects on competition. Nature 529, 204-207. https://doi.org/10.1038/nature16476.
Kunstler, G., Lavergne, S., Courbaud, B., Thuiller, W., Vieilledent, G., Zimmermann, N. E., Kattge, J., & Coomes, D.A. (2012). Competitive interactions between forest trees are driven by species’ trait hierarchy, not phylogenetic or functional similarity: implications for forest community assembly. Ecology Letters, 15(8), 831-840. https://doi.org/10.1111/j.1461-0248.2012.01803.x.
Lana, A. M. Q., Lana, R. M. Q., Lemes, E. M., Reis, G. L., & Moreira, G. H. F. A. (2018) Influence of native or exotic trees on soil fertility in decades of silvopastoral system at the Brazilian savannah biome. Agroforestry System, 92, 415-424. https://doi.org/10.1007/s10457-016-9998-8.
Leitman, P., Soares, K., Henderson, A., Noblick, L., & Martins, R. C. (2020). Arecaceae in Lista de Espécies da Flora do Brazil http://floradobrasil.jbrj.gov.br/jabot/floradobrasil/FB15745>
Lemes, A. P., Gimenes, L. U., Pezzopane, J. R. M., Bosi, C., Esteves, S. N., Pedroso, A. F., Oliveira, P. P. A., Marcondes, C. R., Berndt, A., Mahlmeister, K., Bernardi, A. C. C., Alves, T. C., & Garcia, A. R. (2015). Thermal comfort of composite beef heifers (Bos taurus vs Bos indicus) raised in livestock-forest systems in Southeastern Brazil https://www.alice.cnptia.embrapa.br/alice/bitstream/doc/1022051/1/PROCIJRMP2015.00024.pdf
Leonello, E. C., Palma, H. A., & Ballarin, A. W. (2008). Delimitação da madeira juvenil e adulta de Eucalyptus grandis em São Paulo, Brasil. Revista Forestal Venezoelana, 52(1), 93-98.
Longui, E. L., Romeiro, D., Pfleger, P., Lima, I. L., Silva-Junior, F. G., Garcia, J. N., Bortoletto-Junior, G., Freire-Neto, A. O. L., & Florsheim, S. M. B. (2014). Radial variation of anatomical features, physicomechanical properties and chemical constituents and their potential influence on the wood quality of 45-year-old Eucalyptus propinqua. Australian Forestry, 77, 78-85. https://doi.org/10.1080/00049158.2014.905739.
Lorenzi, H. (2002). Árvores brasileiras - manual de identificação e cultivo de plantas arbóreas nativas do Brasil. Nova Odessa: Instituto Plantarum.
Luz, C. L. S., Pirani, J. R., & Mitchell, J D. (2019). Anacardiaceae in Flora do Brasil 2020 http://floradobrasil.jbrj.gov.br/reflora/floradobrasil/FB4394.
Magalhães, C. A. S., Pedreira, B. C., Tonini, H., & Farias-Neto, A. L. (2019). Crop, livestock, and forestry performance assessment under different production systems in the north of Mato Grosso, Brazil. Agroforestry Systems, 93, 2085-2096. https://doi.org/10.1007/s10457-018-0311-x.
Malan, F. S. (1995). Eucalyptus improvement for lumber production. In: Seminário internacional de utilização da madeira de Eucalyptus para serraria, Piracicaba-SP. IPEF, IPT, IUFRO, LCF, ESALQ, USP. https://www.ipef.br/publicacoes/anais/anais_seminario_internacional_utilizacao_madeira_eucalipto_serraria.pdf.
Meinzer, F. C., Campanello, P. I., Domec, J. C., Genoveva-Gatti, M., Goldstein, G., Villalobos-Vega, R., & Woodruff, D. R. (2008). Constraints on physiological function associated with branch architecture and wood density in tropical forest trees. Tree Physiology, 28, 1609-1617. https://doi.org/ 10.1093/treephys/28.11.1609.
Menucelli, J. R., Amorim, E. P., Freitas, M. L. M., Zanata, M., Cambuim, J., Moraes, M. L. T., Yamaji, F. M., Silva-Júnior, F. G., & Longui, E. L. (2019). Potential of Hevea brasiliensis clones, Eucalyptus pellita and Eucalyptus tereticornis wood as raw materials for bioenergy based on Higher Heating Value. Bioenergy Research, 12, 992-999. http://dx.doi.org/10.1007/s12155-019-10041-6.
Moraes, M. L. T., Mori, E. S., & Rodrigues, C. J. (2006). Delineamento de pomar multiespécies. In: Higa, A.R., Silva, L.D. (Eds.) Pomar de sementes de espécies florestais nativas. Curitiba: FUPEF.
Moura, M. S. B. (2007). Dados Climáticos Estação Meteorológica do Campo Experimental da Caatinga. Petrolina: Embrapa-Semi-Árido.
Nair, P. K. R. (1985). Classification of agroforestry systems. Agroforestry Systems, 3, 97-128. https://doi.org/10.1007/BF00122638.
Nogueira, L. (2019). Brachiaria decumbens: ainda uma boa opção? https://blog.aegro.com.br/brachiaria-decumbens/
Oliveira, M. C., Ribeiro, J. F., Passos, F. B., Aquino, F. G., Oliveira, F. F., & Sousa, S. R. (2015). Crescimento de espécies nativas em um plantio de recuperação de Cerrado sentido restrito no Distrito Federal, Brasil. Revista Brasileira de Biociências, 13 (1), 25-32.
Paul, C., Griess, V. C., Havardi-Burger, N., & Weber, M. (2015). Timber-based agrisilviculture improves financial viability of hardwood plantations: a case study from Panama. Agroforestry Systems, 89, 217-235.
Paula, J. E., & Alves, L. H. (2007). 897 Madeiras nativas do Brazil: anatomia, dendrologia, dendrometria, produção, uso, Cinco Continentes: Porto Alegre.
Paula, R. R., Reis, G. G., Reis, M. G., Oliveira-Neto, S. N., Leite, H. G., Melido, R. C. N., Lopes, H. N. S., & Souza, F. C. (2013). Eucalypt growth in monoculture and silvopastoral systems with varied tree initial densities and spatial arrangements. Agroforestry Systems, 87(6), 1295-1307. https://doi:10.1007/s10457-013-9638-5.
Pinto, A. F., & Rodigheri, H. R. (2001). Reflorestamento misto de espécies florestais nativas a pleno sol na região do Norte Pioneiro do Estado do Paraná. Colombo: Embrapa Florestas.
Pratt, R. B., Jacobsen, A. L., Ewers, F. W., & Davis, S. D. (2007). Relationships among xylem transport, biomechanics and storage in stems and roots of nine Rhamnaceae species of the California chaparral. New Phytologist, 174, 787-798. https://doi: 10.1111/j.1469-8137.2007.02061. x.
Rice, R. A. (2008). Agricultural intensification within agroforestry: The case of coffee and wood products. Agriculture Ecosystems & Environment, 128 (4), 212-218. https://doi.10.1016/j.agee.2008.06.007.
Ripperton, J. C., & Hosaka, E. Y. (1942). Vegetation zones of Hawaii. Honolulu (HI): Hawaii Agricultural Experiment Station. University of Hawaii. http://hdl.handle.net/10125/13436
Rivest, D., Cogliastro, A., & Olivier, A. (2009). Tree-based intercropping systems increase growth and nutrient status of hybrid poplar: A case study from two Northeastern American experiments, Journal of Environmental Management, 91 (2), 432-440. https://doi.org/10.1016/j.jenvman.2009.09.013.
Rivest, D., Olivier, A., & Gordon, A. M. (2010). Hardwood Intercropping Systems: Combining wood and agricultural production while delivering environmental services. Agriculture and Agri-Food Canada. http://www.plg.ulaval.ca/giraf/rivest_olivier_gordon_2010eng.pdf.
Rodrigues, C. O. D., Araújo, S. A. C., Viana, M. C. M., Rocha, N. S., Braza, T. G. S., & Villela, S. D. J. (2014). Light relations and performance of signal grass in silvopastoral system. Acta Scientarum Animal Science, 36 (2),129-136. Doi: 10.4025/actascianimsci.v36i2.22398
Rolim, G. S., Sentelhas, P. C., & Barbieri, V. (1998). Planilhas no ambiente EXCEL para os cálculos de balanços hídricos: normal, sequencial, de cultura e de produtividade real e potencial. Revista Brasileira de Agrometeorologia, 6 (1), 133-137.
Santin, D. A., & Leitão-Filho, H. F. (1991). Restabelecimento e revisão taxonômica do gênero Myracrodruon Freire Allemão (Anacardiaceae). Revista Brasileira de Botânica, 14 (2), 133-145.
Santos, H. G., Jacomine, P. K. T., Anjos, L. H. C., Oliveira, V. A., Oliveira, J. B., Coelho, M. R., Lumbrelas, J. F., Cunha, T. J .F., & Almeida, J. A. (2018). Sistema Brasileiro de Classificação de Solos (355p.). https://www.infoteca.cnptia.embrapa.br/infoteca/handle/doc/1094003
Scholz, F. G., Bucci, S. J., Goldstein, G., Meinzer, F. C., Franco, A. C., & Miralles-Wilhelm. F. (2007). Biophysical properties and functional significance of stem water storage tissues in Neotropical savanna trees. Plant Cell & Environment, 30 (2), 236-248. doi:10.1111/j.1365-3040.2006.01623.x.
Silva, M. G., Numazawa, S., Araujo, M. M., Nagaishi, T. Y. R., & Galvão, G. R. (2007). Carvão de resíduos de indústria madeireira de três espécies florestais exploradas no município de Paragominas, PA. Acta Amazonia, 37 (1), 61-70. https://doi.org/10.1590/S0044-59672007000100007.
Silva, I. C. (2013). Sistemas Agroflorestais. Conceitos e métodos. Colombo: Embrapa Florestas.
Silva, L. L. H., Oliveira, E., Calegari, L., Pimenta, M. C., & Dantas, M. K. L. (2017). Características dendrométricas, físicas e químicas da Myracrodruon urundeuva e da Leucaena leucocephala. Floresta e Ambiente, 24, 1-8. https://doi.org/10.1590/2179-8087.002216
Silva, T. S., Rando, J. G., & Carvalho, D. A. S. (2017). Peltophorum in Flora do Brasil 2020 http://floradobrasil.jbrj.gov.br/reflora/floradobrasil/FB83567
Souza, A. N., Ângelo, H., Joaquim, M. S., Souza, S. N., & Belknap, J. E. (2012). Economic Feasibility of a Eucalyptus Agroforestry System in Brazil. https://www.intechopen.com/books/global-perspectives-on-sustainable forest-management/economical-feasibility-of-an-agro-forestry-system
Spirchez, C., Lunguleasa, A., & Matei, M. (2018). Particularities of hollow-core briquettes obtained out of spruce and oak wooden waste. Maderas-Ciencia y tecnologia, 20 (1), 139-152. http://dx.doi.org/10.4067/S0718-221X2018005001201
Stanton, W. R. (1966). Grain legumes in Africa. Food and Agriculture Organization, Rome https://books.google.fr/books/about/Grain_Legumes_in_Africa.html?id=kTFJAAAAMAAJ&redir_esc=y
SigmaPlot-Version 12. (2013). Systat Software.
Tarsitano, M. A. A., Kobayashi, M. K., Moraes, M. L. T., Kageyama, P. Y., Antiqueira, L. R., & Cambuim, J. (1994). Custo de implantação da aroeira (Myracrodruon urundeuva Fr. All.) em diferentes sistemas de plantio. Cultura Agronômica, 3 (1), 47-54.
Thornthwaite, C. W., & Mather, J. R. (1955). The water balance. Drexel Institute of Technology, New Jersey. https://www.worldcat.org/title/water-balance/oclc/637882076
Universidade Estadual Paulista- UNESP. (2018). Canal CLIMA da UNESP Ilha Solteira: área de Hidráulica e Irrigação. Ilha Solteira http://clima.feis.unesp.br/
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2021 Eduardo Luiz Longui; Rhayssa Almeida Justo; Erick Phelipe Amorim; Adriano Wagner Ballarin; Miguel Luiz Menezes de Freitas; Fábio Minoru Yamaji; Francides Gomes da Silva Júnior; Damase Khasa; José Cambuim; Mario Luiz Teixeira de Moraes
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Autores que publicam nesta revista concordam com os seguintes termos:
1) Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
2) Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
3) Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado.