Determinação da espessura e índice de refração de filmes finos de SiO2 usando o método de otimização global Cross-entropy

Autores

DOI:

https://doi.org/10.33448/rsd-v10i10.19028

Palavras-chave:

Otimização global; Caracterização óptica; Filme fino; Modelo de Cauchy; SiO2; Cross-entropy; Bootstrapping.

Resumo

O dióxido de silício (SiO2) é um material abundante na natureza e que possui ampla aplicação em dispositivos semicondutores e isolantes. Neste trabalho foi realizado o crescimento de um conjunto de seis amostras de SiO2 em substrato de Silício Sigma-Aldrich, variando o tempo e a temperatura de crescimento. Este conjunto de amostras foram crescidas utilizando tempos de 10 e 12h e temperaturas de 800, 900 e 1000 ºC, sobre atmosfera ambiente. Após o crescimento dos filmes, realizou-se medidas de refletância nos filmes eno substrato, utilizando o espectrofotômetro Stellarnet UV-VIS-NIR entre 194 a 1081,5 nm. Estas medidas foram modeladas utilizando um método de otimização global, nomeado Cross-entropy, juntamente com a técnica de reamostragem Bootstrapping, buscando determinar de forma robusta e estatística o índice de refração do filme fino em função do comprimento de onda e sua espessura. Para estimar o índice de refração do filme fino de SiO2 foi utilizado o modelo de Cauchy. Para o substrato foram utilizadas as medidas de refletância. O método se mostrou eficiente, apresentando valores de espessura que foram validados de acordo com os parâmetros de crescimento e dados da literatura. Tal método se mostrou uma ferramenta importante e de baixo custo, em comparação com os métodos tradicionais, para ajudar nas etapas de construção de filmes finos para dispositivos semicondutores e isolantes, melhorando assim, suas propriedades físicas e também ​possibilitando o desenvolvimento de novos dispositivos.

Referências

Batsanov, S. S., Ruchkin, E. D., & Poroshina, I. A. (2016). Refractive Indices of Solids. In Springer Briefs in Applied Sciences and Technology. Springer Singapore. https://doi.org/10.1007/978-981-10-0797-2

Black, R. D., Arthur, S. D., Gilmore, R. S., Lewis, N., Hall, E. L., & Lillquist, R. D. (1988). Silicon and silicon dioxide thermal bonding for silicon‐on‐insulator applications. Journal of Applied Physics, 63(8), 2773–2777. https://doi.org/10.1063/1.340976

Boos, D. D. (2003). Introduction to the Bootstrap World. Statistical Science, 18(2). https://doi.org/10.1214/ss/1063994971

Chakravarty, S., Teng, M., Safian, R., & Zhuang, L. (2021). Hybrid material integration in silicon photonic integrated circuits. Journal of Semiconductors, 42(4), 041303. https://doi.org/10.1088/1674-4926/42/4/041303

Curran, A., Gocalinska, A., Pescaglini, A., Secco, E., Mura, E., Thomas, K., Nagle, R. E., Sheehan, B., Povey, I. M., Pelucchi, E., O’Dwyer, C., Hurley, P. K., & Gity, F. (2021). Structural and Electronic Properties of Polycrystalline InAs Thin Films Deposited on Silicon Dioxide and Glass at Temperatures below 500 °C. Crystals, 11(2), 160. https://doi.org/10.3390/cryst11020160

Eckertová, L. (2012). Physics of Thin Films. Estados Unidos: Springer US.

El-Bindary, A., Anwar, Z., & El-Shafaie, T. (2021). Effect of silicon dioxide nanoparticles on the assessment of quercetin flavonoid using Rhodamine B Isothiocyanate dye. Journal of Molecular Liquids, 323, 114607. https://doi.org/10.1016/j.molliq.2020.114607

Gao, L., Lemarchand, F., & Lequime, M. (2013). Refractive index determination of SiO2 layer in the UV/Vis/NIR range: spectrophotometric reverse engineering on single and bi-layer designs. Journal Of The European Optical Society - Rapid Publications, 8. doi:10.2971/jeos.2013.13010

Garcia-Caurel, E., De Martino, A., Gaston, J.-P., & Yan, L. (2013). Application of Spectroscopic Ellipsometry and Mueller Ellipsometry to Optical Characterization. Applied Spectroscopy, 67(1), 1–21. https://doi.org/10.1366/12-06883

Heavens, O. S. (1991). Optical Properties of Thin Solid Films, Dover Books on Physics Series

Huanca, D. R., & Salcedo, W. J. (2015). Optical characterization of one-dimensional porous silicon photonic crystals with effective refractive index gradient in depth. Physica Status Solidi (a), 212(9), 1975–1983. https://doi.org/10.1002/pssa.201532063

Jain, A. K., Dubes, R. C., & Chen, C.-C. (1987). Bootstrap Techniques for Error Estimation. IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-9(5), 628–633. https://doi.org/10.1109/tpami.1987.4767957

Jesus, J. J. de, Oliveira, A. F. , & Silva, A. P. da. (2021). Espectrômetro digital. Uma proposta de construção de um experimento de Física Moderna para o ensino remoto. Research, Society and Development, 10(8), e51410817786. https://doi.org/10.33448/rsd-v10i8.17786

Li, J., & Wu, S.-T. (2004). Extended Cauchy equations for the refractive indices of liquid crystals. Journal of Applied Physics, 95(3), 896–901. https://doi.org/10.1063/1.1635971

Liu, S., Deng, Z., Li, J., Wang, J., & Huang, N. (2019). Measurement of the refractive index of whole blood and its components for a continuous spectral region. Journal of Biomedical Optics, 24(03), 1. https://doi.org/10.1117/1.jbo.24.3.035003

Losurdo, M., Bergmair, M., Bruno, G., Cattelan, D., Cobet, C., de Martino, A., Fleischer, K., Dohcevic-Mitrovic, Z., Esser, N., Galliet, M., Gajic, R., Hemzal, D., Hingerl, K., Humlicek, J., Ossikovski, R., Popovic, Z. V., & Saxl, O. (2009). Spectroscopic ellipsometry and polarimetry for materials and systems analysis at the nanometer scale: state-of-the-art, potential, and perspectives. Journal of Nanoparticle Research, 11(7), 1521–1554. https://doi.org/10.1007/s11051-009-9662-6

Oliveira, A. F., Rubinger, R. M., Monteiro, H., Rubinger, C. P. L., Ribeiro, G. M., & de Oliveira, A. G. (2015). Main scattering mechanisms in InAs/GaAs multi-quantum-well: a new approach by the global optimization method. Journal of Materials Science, 51(3), 1333–1343. https://doi.org/10.1007/s10853-015-9451-9

Pereira, A.S., Shitsuka, D. M., Parreira, F. J., Shitsuka, R. (2018) Metodologia de pesquisa científica, UFSM

Ribeiro, L. H., Ider, J., Oliveira, A. F., Rubinger, R. M., Rubinger, C. P. L., & de Oliveira, A. G. (2021). Investigation of electronic transport in InAs/GaAs samples. A study using the metaheuristic self-adaptive differential evolution method. Physica B: Condensed Matter, 413293. https://doi.org/10.1016/j.physb.2021.413293

Rubinger, R. M., da Silva, E. R., Pinto, D. Z., Rubinger, C. P. L., Oliveira, A. F., & da Costa Bortoni, E. (2015). Comparative and quantitative analysis of white light-emitting diodes and other lamps used for home illumination. Optical Engineering, 54(1), 014104. https://doi.org/10.1117/1.oe.54.1.014104

Rubinstein, R. Y. (1997). Optimization of computer simulation models with rare events. European Journal of Operational Research, 99(1), 89–112. https://doi.org/10.1016/s0377-2217(96)00385-2

Rubinstein, R. Y. & Kroese, D. P. (2004) The Cross-Entropy Method: A Unified Approach to Combinatorial Optimization, Monte-Carlo Simulation and Machine Learning (Information Science and Statistics), Springer.

Vidakis, N., Petousis, M., Velidakis, E., Tzounis, L., Mountakis, N., Korlos, A., Fischer-Griffiths, P. E., & Grammatikos, S. (2021). On the Mechanical Response of Silicon Dioxide Nanofiller Concentration on Fused Filament Fabrication 3D Printed Isotactic Polypropylene Nanocomposites. Polymers, 13(12), 2029. https://doi.org/10.3390/polym13122029

Zhu, W. (1997). Making Bootstrap Statistical Inferences: A Tutorial. Research Quarterly for Exercise and Sport, 68(1), 44–55. https://doi.org/10.1080/02701367.1997.10608865

Zou, X., Ji, L., Ge, J., Sadoway, D. R., Yu, E. T., & Bard, A. J. (2019). Electrodeposition of crystalline silicon films from silicon dioxide for low-cost photovoltaic applications. Nature Communications, 10(1). https://doi.org/10.1038/s41467-019-13065-w

Downloads

Publicado

14/08/2021

Como Citar

ZACCARO, S. J. V. .; OLIVEIRA, A. F.; RUBINGER, R. M.; SIQUEIRA, C. C. de .; COSTA JUNIOR, R. A. da . Determinação da espessura e índice de refração de filmes finos de SiO2 usando o método de otimização global Cross-entropy. Research, Society and Development, [S. l.], v. 10, n. 10, p. e326101019028, 2021. DOI: 10.33448/rsd-v10i10.19028. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/19028. Acesso em: 27 jul. 2024.

Edição

Seção

Ciências Exatas e da Terra