Avaliação de risco à saúde por oligoelementos em um sistema aquático no centro-oeste do Brasil

Autores

DOI:

https://doi.org/10.33448/rsd-v10i10.19037

Palavras-chave:

Poluição da água; Metal; Risco não cancerígeno; Risco de câncer; Contaminação.

Resumo

A água é um bem importante para a manutenção da vida e para o desenvolvimento socioeconômico. Os ambientes aquáticos vêm sendo antropizados, recebendo grande carga de poluente, principalmente de oligoelementos. Este estudo investiga a ocorrência de riscos à saúde causados por 15 oligoelementos nas águas superficiais do riacho João Leite. Os índices de risco à saúde foram avaliados como dose média diária (ADD), quociente de risco (HQ), índice de risco e risco carcinogênico. A análise de risco à saúde humana do riacho João Leite, indicou que a ADDingestão para os adultos teve maior para Fe 1,86E-00 µg/kg/dia e menor valor para Be 8,0E-05 µg/kg/dia. Por outro lado, da ADDdérmica o maior valor foi para Fe 5,02E-02 µg/kg/dia e o menor para Sb 1,54E-05 µg/kg/dia. Para crianças com ADDingestão obtida com maior valor foi Fe 2,60E-00 µg/kg/dia e menor para Be 1,12E-04 µg/kg/dia. Para ADDdérmica o maior valor foi para Fe 8,58E-02 µg/kg/dia e menor para Sb 2,64E-05 µg/kg/dia. HQ para adultos variou de 1,61E-05 a 2,97E-01 para HQingestião e 7,71E-06 a 1,01E-01 para HQdérmica. Para crianças 2.25E-05 a 3.74E-01 para HQingestião e 1.32E-05 a 1.73E-01 para HQdérmica. A avaliação de risco à saúde mostrou que para as crianças, os oligoelementos presentes na água têm um efeito potencialmente adverso na saúde não cancerígeno. Os riscos cancerígenos eram inaceitáveis para crianças e adultos. Assim, recomenda-se que o uso dessas águas seja limitado e que sejam tomadas medidas para minimizar a poluição por oligoelementos.

Referências

Abdel-satar, A. M., Ali, M. H., & Goher, M. E. (2017). Indices of water quality and metal pollution of Nile. The Egyptian Journal of Aquatic Research, 43(1), 21–29. https://doi.org/10.1016/j.ejar.2016.12.006

Arantes, A. G. S. (2017). Abastecimento público do ribeirão joão leite – go. https://repositorio.bc.ufg.br/tede/handle/tede/7808

Beyersmann, D., & Hartwig, A. (2008). Carcinogenic metal compounds: Recent insight into molecular and cellular mechanisms. Archives of Toxicology, 82(8), 493–512. https://doi.org/10.1007/s00204-008-0313-y

Cempel, M., & Nikel, G. (2006). Nickel : A Review of Its Sources and Environmental Toxicology. 15(3), 375–382.

Cetesb (Companhia Ambiental do Estado de São Paulo). (2011). Guia Nacional de Coleta e Preservação de Amostras - Água, Sedimento, Comunidades Aquáticas e Efluentes Líquidos. Companhia Ambiental Do Estado de São Paulo, 326p. https://doi.org/C737g

Clescerl, L., Greenberg, A., & Eaton, A. (1999). Standard Methods for Examining Water and Wastewater.

Conama (Conselho Nacional do Meio Ambiente). (2005). Resolução n 357, 18 de março de 2005. Diário Oficial, 053, 58–63.

Emenike, P. G. C., Neris, J. B., Tenebe, I. T., Nnaji, C. C., & Jarvis, P. (2020). Estimation of some trace metal pollutants in River Atuwara southwestern Nigeria and spatio-temporal human health risks assessment. Chemosphere, 239, 124770. https://doi.org/10.1016/j.chemosphere.2019.124770

Ferré-Huguet, N., Nadal, M., Schuhmacher, M., & Domingo, J. L. (2009). Human health risk assessment for environmental exposure to metals in the Catalan stretch of the Ebro River, Spain. Human and Ecological Risk Assessment, 15(3), 604–623. https://doi.org/10.1080/10807030902892604

Ferreira, J. C., Pais, M. S., Yamanaka, K., Carrijo, G. A., Teixeira, M. B., Silva, R. T. da, & Rabelo, C. G. (2011). Previsão de vazão da bacia do ribeiro joão leite utilizando redes neurais artificiais. Botucatu Irriga, 16(3), 339–350. https://doi.org/10.1017/CBO9781107415324.004

Gummow, B., & Sciences, B. (2011). Vanadium : Environmental Pollution and Health Effects. 628–636.

Igbinedion, J. J., & Oguzie, F. A. (2016). Heavy Metals Concentration in Fish and Water of River Osse Benin City Nigeria. 4(3), 80–84. https://doi.org/10.12691/ijebb-4-3-2

Ilechukwu, I., Osuji, L. C., Okoli, C. P., Onyema, M. O., & Ndukwe, G. I. (2021). Assessment of heavy metal pollution in soils and health risk consequences of human exposure within the vicinity of hot mix asphalt plants in Rivers State, Nigeria. Environmental Monitoring and Assessment, 193, 461 (2021). https://doi.org/10.1007/s10661-021-09208-6

Joardar, M., Das, A., Mridha, D., Nilanjana, A. De, & Chowdhury, R. (2020). Evaluation of Acute and Chronic Arsenic Exposure on School Children from Exposed and Apparently Control Areas of West Bengal , India. Exposure and Health, 0123456789. https://doi.org/10.1007/s12403-020-00360-x

Köche, J. C. (2016). Fundamentos de metodologia científica. Editora Vozes.

Koedrith, P., & Seo, Y. R. (2011). Advances in Carcinogenic Metal Toxicity and Potential Molecular Markers. International Journal of Molecular Sciences, 12(12), 9576–9595. https://doi.org/10.3390/ijms12129576

Kumar, V., Sharma, A., Kumar, R., Bhardwaj, R., Kumar Thukral, A., & Rodrigo-Comino, J. (2020). Assessment of heavy-metal pollution in three different Indian water bodies by combination of multivariate analysis and water pollution indices. Human and Ecological Risk Assessment, 26(1), 1–16. https://doi.org/10.1080/10807039.2018.1497946

Leyssens, L., Vinck, B., Van Der Straeten, C., Wuyts, F., & Maes, L. (2017). Cobalt toxicity in humans—A review of the potential sources and systemic health effects. Toxicology, 387(March), 43–56. https://doi.org/10.1016/j.tox.2017.05.015

Ma, X., Zuo, H., Tian, M., Zhang, L., Meng, J., Zhou, X., Min, N., Chang, X., & Liu, Y. (2016). Assessment of heavy metals contamination in sediments from three adjacent regions of the Yellow River using metal chemical fractions and multivariate analysis techniques. Chemosphere, 144, 264–272. https://doi.org/10.1016/j.chemosphere.2015.08.026

MacHado, C. S., Alves, R. I. S., Fregonesi, B. M., Tonani, K. A. A., Martinis, B. S., Sierra, J., Nadal, M., Domingo, J. L., & Segura-Muñoz, S. (2016). Chemical Contamination of Water and Sediments in the Pardo River, São Paulo, Brazil. Procedia Engineering, 162, 230–237. https://doi.org/10.1016/j.proeng.2016.11.046

Machado, C. S., Fregonesi, B. M., Alves, R. I. S., Tonani, K. A. A., Sierra, J., Martinis, B. S., Celere, B. S., Mari, M., Schuhmacher, M., Nadal, M., Domingo, J. L., & Segura-Muñoz, S. (2017). Health risks of environmental exposure to metals and herbicides in the Pardo River, Brazil. Environmental Science and Pollution Research, 24(25), 20160–20172. https://doi.org/10.1007/s11356-017-9461-z

Means, B. (1989). Risk-assessment guidance for superfund. Volume 1. Human health evaluation manual. Part A. Interim report (Final) (U. S. E. P. Agency (ed.); Office of).

Mehta, B. C., & Srivastava, K. K. (2012). Iron in ground water in india and its geochemistry. Indian Society of Applied Geochemists Memoir, 1, 227–240

Mohammadi, A. A., Zarei, A., Majidi, S., Ghaderpoury, A., Hashempour, Y., Saghi, M. H., ... & Ghaderpoori, M. (2019). Carcinogenic and non-carcinogenic health risk assessment of heavy metals in drinking water of Khorramabad, Iran. MethodsX, 6, 1642-1651. https://doi.org/10.1016/j.mex.2019.07.017

Munger, Z. W., Shahady, T. D., & Schreiber, M. E. (2017). Effects of reservoir stratification and watershed hydrology on manganese and iron in a dam-regulated river. Hydrological Processes, 31(8), 1622–1635. https://doi.org/10.1002/hyp.11131

Oca, R. M. G. F.-M. de, Ramos-Leal, J. A., Morán-Ramírez, J., Esquivel-Martínez, J. M., Álvarez-Bastida, C., & Fuentes-Rivas, R. M. (2020). Hydrogeochemical Characterization and Assessment of Contamination by Inorganic and Organic Matter in the Groundwater of a Volcano-Sedimentary Aquifer. Bulletin of Environmental Contamination and Toxicology. https://doi.org/10.1007/s00128-020-02819-8

OEHHA (Office of Environmental Health Hazard Assessment). (2020). Toxicity criteria on chemicals evaluated by OEHHA.https://oehha.ca.gov/chemicals.

Pereira, A. S., Shitsuka, D. M., Parreira, F. J., & Shitsuka, R. (2018). Metodologia da pesquisa científica.[e-book].

RAIS (Risk Assessment Information Systemrais). (2020). The Risk Assessment Information System: Toxicity profiles. https://rais.ornl.gov/tools/tox_profiles.html

Rehman, I. ur, Ishaq, M., Ali, L., Khan, S., Ahmad, I., Ud, I., & Ullah, H. (2018). Ecotoxicology and Environmental Safety Enrichment , spatial distribution of potential ecological and human health risk assessment via toxic metals in soil and surface water ingestion in the vicinity of Sewakht mines , district Chitral , Northern Pakistan. Ecotoxicology and Environmental Safety, 154(February), 127–136. https://doi.org/10.1016/j.ecoenv.2018.02.033

Roubicek, D. A., Rech, C. M., & Umbuzeiro, G. A. (2020). Mutagenicity as a parameter in surface water monitoring programs—opportunity for water quality improvement. Environmental and Molecular Mutagenesis, 61(1), 200–211. https://doi.org/10.1002/em.22316

Saha, N., Rahman, M. S., Ahmed, M. B., Zhou, J. L., Ngo, H. H., & Guo, W. (2017). Industrial metal pollution in water and probabilistic assessment of human health risk. Journal of environmental management, 185, 70-78. https://doi.org/10.1016/j.jenvman.2016.10.023

Sánchez-Mateos, S., Pérez, L. V., Córdova Suárez, M. A., & Cabrera-Riofrio, D. A. (2020). Heavy metal contamination in the Cotopaxi and Tungurahua rivers: a health risk. Environmental Earth Sciences, 79(6), 1–14. https://doi.org/10.1007/s12665-020-8869-9

Sarkar, A., & Shekhar, S. (2018). Iron contamination in the waters of Upper Yamuna basin. Groundwater for Sustainable Development, 7(July 2017), 421–429. https://doi.org/10.1016/j.gsd.2017.12.011

Schäffner, F., Merten, D., Pollok, K., Wagner, S., Knoblauch, S., Langenhorst, F., & Büchel, G. (2015). Fast formation of supergene Mn oxides/hydroxides under acidic conditions in the oxic/anoxic transition zone of a shallow aquifer. Environmental Science and Pollution Research, 22(24), 19362–19375. https://doi.org/10.1007/s11356-015-4404-z

Shil, S., & Singh, U. K. (2019). Health risk assessment and spatial variations of dissolved heavy metals and metalloids in a tropical river basin system. Ecological Indicators, 106, 105455. https://doi.org/10.1016/j.ecolind.2019.105455

Usepa (United States Environmental Protection Agenc). (2020). Human Health Risk Assessment. https://www.epa.gov/risk/human-health-risk-assessment.

USEPA (United States Environmental Protection Agenc). (2020). Human Health Risk Assessment. https://www.epa.gov/risk/human-health-risk-assessment

Wongsasuluk, P., Chotpantarat, S., Siriwong, W., & Robson, M. (2014). Heavy metal contamination and human health risk assessment in drinking water from shallow groundwater wells in an agricultural area in Ubon Ratchathani province, Thailand. Environmental Geochemistry and Health, 36(1), 169–182. https://doi.org/10.1007/s10653-013-9537-8

Xiao, J., Wang, L., Deng, L., & Jin, Z. (2019). Characteristics, sources, water quality and health risk assessment of trace elements in river water and well water in the Chinese Loess Plateau. Science of the Total Environment, 650, 2004-2012. https://doi.org/10.1016/j.scitotenv.2018.09.322

Yaman, B. (2020). Health Effects of Chromium and Its Concentrations in Cereal Foods Together with Sulfur. Exposure and Health, 12(2), 153–161. https://doi.org/10.1007/s12403-019-00298-9

Zhou, Y., Ning, J., Li, L., Long, Q., Wei, A., & Liu, Z. (2020). Health Risk Assessment of Groundwater in Gaobeidian , North China : Distribution , Source , and Chemical Species of the Main Contaminants. Exposure and Health, 12(3), 427–446. https://doi.org/10.1007/s12403-020-00365-6

Downloads

Publicado

14/08/2021

Como Citar

GOMES, R. P. .; OLIVEIRA , T. R. .; GAMA , A. R. .; LIMA , F. S. .; VIEIRA, J. D. G. .; ROCHA , T. L. .; CARNEIRO , L. C. . Avaliação de risco à saúde por oligoelementos em um sistema aquático no centro-oeste do Brasil. Research, Society and Development, [S. l.], v. 10, n. 10, p. e398101019037, 2021. DOI: 10.33448/rsd-v10i10.19037. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/19037. Acesso em: 26 jul. 2024.

Edição

Seção

Ciências da Saúde