Wastewater treatment from the manufacture of solar lenses

Authors

DOI:

https://doi.org/10.33448/rsd-v10i11.19397

Keywords:

Dyes; Anthraquinone; Electro-Fenton; Industrial effluent; Advanced oxidative process.

Abstract

This work is a partnership with an ophthalmic products company that generates effluents containing a mixture of three dyes: blue 56, yellow 54 and red 60, all in the anthraquinone class. Dyes in this class are resistant to degradation due to their aromatic structure, which retains color for long periods of time. The treatment of these dyes is extremely important due to their toxicity, and may present carcinogenic and mutagenic behavior. The objective of this work was to oxidize polluting organic compounds using advanced oxidative processes. For this, constant current electrolysis was performed using oxide electrodes as heterogeneous catalysts together with Fenton's reagent (Fe2+ + H2O2). Discoloration and oxidation were monitored by UV-Visible spectrometry, high performance liquid chromatography and total organic carbon. The applied treatment allowed a rapid degradation of the chromophore groups and there was a great influence of the hydrogen peroxide concentration on the speed of this degradation. The results were satisfactory, since the coloration was eliminated and the oxidation products identified do not present toxicity and can be easily treated by traditional methods.

References

Brillas, E., (2021). Recent development of electrochemical advanced oxidation of herbicides. A review on its application to wastewater treatment and soil remediation. Journal of Cleaner Production, 290, 125841. https://doi.org/10.1016/j.jclepro.2021.125841

Brillas, E., Sirés, I., & Oturan, M. A. (2009). Electro-Fenton process and related electrochemical technologies based on Fenton’s reaction chemistry. Chemical reviews, 109(12), 6570-6631. https://doi.org/10.1021/cr900136g.

CETESB, Companhia Ambiental do Estado de São Paulo (2011). Guia nacional de coleta e preservação de amostras: água, sedimento, comunidades aquáticas e efluentes líquidos. 396 p. https://capacitacao.ana.gov.br/conhecerh/handle/ana/2211

Feng, D., Soric, A., & Boutin, O. (2020). Treatment technologies and degradation pathways of glyphosate: A critical review. Science of The Total Environment, 140559. https://doi.org/10.1016/j.scitotenv.2020.140559

Forti, J. C., Loretti, G. H., Tadayozzi, Y. S., & de Andrade, A. R. (2020). A phytotoxicity assessment of the efficiency 2, 4-D degradation by different oxidative processes. Journal of Environmental Management, 266, 110588. https://doi.org/10.1007/s12678-010-0020-3

Forti, J. C., Olivi, P., & de Andrade, A. R. (2001). Characterisation of DSA®-type coatings with nominal composition Ti/Ru0.3Ti(0.7− x)SnxO2 prepared via a polymeric precursor. Electrochimica Acta, 47(6), 913-920. https://doi.org/10.1016/S0013-4686(01)00791-5

Gregory, P. (2003). Important chemical chromophores of dye classes. Industrial Dyes: Chemistry, Properties, Applications, 35-39. https://doi.org/10.1002/3527602011.ch2

Guimarães, J.R. (2013). Processos Oxidativos Avançados. Revista TAE, 32-36. https://www.revistatae.com.br/Artigo/355/processos-oxidativos-avancados

Haber, F., & Weiss, J. (1934). The catalytic decomposition of hydrogen peroxide by iron salts. Proceedings of the Royal Society of London. Series A-Mathematical and Physical Sciences, 147(861), 332-351. https://doi.org/10.1098/rspa.1934.0221

Kaushik, P., & Malik, A. (2009). Fungal dye decolourization: recent advances and future potential. Environment International, 35(1), 127-141. https://doi.org/10.1016/j.envint.2008.05.010

Maia, L. C. C., Jambo, H. C. M., & Gomes, J. A. D. C. P. (2018). Tratamento eletroquímico de efluentes industriais-alternativa para a remoção de contaminantes e potencial aproveitamento de H 2. Matéria (Rio de Janeiro), 22. https://doi.org/10.1590/S1517-707620170005.0259

Martins, R. A. (2010). Abordagens quantitativa e qualitativa. Metodologia de pesquisa em engenharia de produção e gestão de operações. Rio de Janeiro: Elsevier, 47-62. http://eu-ireland-custom-media-prod.s3.amazonaws.com/Brasil/Downloads/14-10/mztodologia.pdf

Oturan, M. A. (2021). Outstanding performances of the BDD film anode in electro-Fenton process: Applications and comparative performance. Current Opinion in Solid State and Materials Science, 25(3), 100925. https://doi.org/10.1016/j.cossms.2021.100925

Panizza, M., & Cerisola, G. (2009). Electro-Fenton degradation of synthetic dyes. Water research, 43(2), 339-344. https://doi.org/10.1016/j.watres.2008.10.028

Peternel, I., Koprivanac, N., & Kusic, H. (2006). UV-based processes for reactive azo dye mineralization. Water Research, 40(3), 525-532. https://doi.org/10.1016/j.watres.2005.11.029

Rêgo, F. E. F., Solano, A. M. S., da Costa Soares, I. C., da Silva, D. R., Huitle, C. A. M., & Panizza, M. (2014). Application of electro-Fenton process as alternative for degradation of Novacron Blue dye. Journal of Environmental Chemical Engineering, 2(2), 875-880. https://doi.org/10.1016/j.jece.2014.02.017

Robinson, T., McMullan, G., Marchant, R., & Nigam, P. (2001). Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative. Bioresource Technology, 77(3), 247-255. https://doi.org/10.1016/S0960-8524(00)00080-8

Routoula, E., & Patwardhan, S. V. (2020). Degradation of anthraquinone dyes from effluents: a review focusing on enzymatic dye degradation with industrial potential. Environmental Science & Technology, 54(2), 647-664. https://doi.org/10.1021/acs.est.9b03737

Tadayozzi, Y. S., Santos, F. A. D., Vicente, E. F., & Forti, J. C. (2021). Application of oxidative process to degrade paraquat present in the commercial herbicide. Journal of Environmental Science and Health, Part B, 1-5. https://doi.org/10.1080/03601234.2021.1936991

Zhang, M. H., Dong, H., Zhao, L., Wang, D. X., & Meng, D. (2019). A review on Fenton process for organic wastewater treatment based on optimization perspective. Science of the total environment, 670, 110-121. https://doi.org/10.1016/j.scitotenv.2019.03.180

Published

24/08/2021

How to Cite

FORTI, J. C. .; TADAYOZZI, Y. S.; SILVA, T. C. C. da .; ANDRADE, C. R. V. de .; SANTOS, F. A. dos . Wastewater treatment from the manufacture of solar lenses. Research, Society and Development, [S. l.], v. 10, n. 11, p. e108101119397, 2021. DOI: 10.33448/rsd-v10i11.19397. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/19397. Acesso em: 29 apr. 2024.

Issue

Section

Exact and Earth Sciences