Respostas fisiológicas do girassol em fase reprodutiva ao estresse hídrico e salino
DOI:
https://doi.org/10.33448/rsd-v10i12.20199Palavras-chave:
Helianthus annus L.; Adaptabilidade; Resistência.Resumo
O objetivo do estudo foi compreender as alterações fisiológicas do girassol, em fase reprodutiva, quando submetido a estresses hídrico e salino. O estudo foi conduzido em ambiente protegido, aplicando-se 4 níveis de irrigação (25%, 50%, 75% e 100% da evapotranspiração da cultura) e 2 níveis de condutividade elétrica da água de irrigação (0,6 e 3,0 dS m-1) no cultivar Charrua. O delineamento foi o de blocos ao acaso em esquema fatorial 4 x 2 com 3 repetições. Foram avaliados parâmetros de trocas gasosas e fluorescência. Para as trocas gasosas avaliou-se a taxa fotossintética (A), taxa transpiratória (E), condutância estomática (Gs), concentração interna de CO2 (Ci) e as razões Ci/Ca, A/Ci, A/Gs e A/E. Para a fluorescência da clorofila A foram mensurados o rendimento quântico efetivo do fotossistema II (ϕ PSII), o rendimento quântico potencial do fotossistema II (Fv/Fm) o quenching fotoquímico (qP) e o quenching não-fotoquímico (qNP). A fluorescência da clorofila A não sofreu alterações significativas com os tratamentos. A Charrua demonstrou adaptabilidade aos efeitos dos estresses, resultando em diminuição da abertura estomática, aumento de Gs, da A, da eficiência instantânea de carboxilação e eficiência do uso da água quando submetido aos menores níveis de irrigação e condutividade elétrica.
Referências
Araújo, R. P., Almeida, A. A. F., Pereira, L. S., Mangabeira, P. A. O., Souza, J. O., Pirovani, C. P., Ahnert, D., & Baligar, V. C. (2017). Photosynthetic, antioxidative, molecular and ultrastructural responses of young cacao plants to cd toxicity in the soil. Ecotoxicology and Environmental Safety, 144,148-157. https://doi.org/10.1016/j.ecoenv.2017.06.006
Ashraf, M., Shahzad, S. M., Akhtar, N., Imtiaz, M., & Ali, A. (2017). Salinization/sodification of soil and physiological dynamics of sunflower irrigated with saline–sodic water amending by potassium and farm yard manure. Journal of Water Reuse and Destination, 7(4), 476-487. https://doi.org/10.2166/wrd.2016.053
Bartlett M.K., Scoffoni C., & Sack L. (2012). The determinants of leaf turgor loss point and prediction of drought tolerance of species and biomes: a global meta-analysis. Ecology Letters, 15, 393-405. https://doi:10.1111/j.1461-0248.2012.01751.x
Borba, M. E. A., Maciel, G. M., Júnior, E. F., Júnior, C. M., Marquez, G. R., Silva, I. G., & Almeida, R. S. (2017). Gas exchanges and water use efficiency in the selection of tomato genotypes tolerant to water stress. Genetics and molecular research: GMR, 16(2), 1-9. http://dx.doi.org/10.4238/gmr16029685.
Dalchiavon, F. C., Malacarne, B. J., & Carvalho, C. G. P. (2016). Características agronômicas de genótipos de girassol (Helianthus annuus L.) em segunda safra no Chapadão do Parecis – MT. Revista de Ciências Agrárias, 39(1), 178-186. http://dx.doi.org/10.19084/RCA15049
Defraeye, T., Derome, D., Verboven, P., Carmeliet, J., & Nicolai, B. (2014). Cross-scale modelling of transpiration from stomata via the leaf boundary layer. Annals of botany, 114(4),711-723. https://doi.org/10.1093/aob/mct313
Dutra, C. C., Prado, E. A. F., Paim, L. R., & Scalon, S. P. Q. (2018). Desenvolvimento de plantas de girassol sob diferentes condições de fornecimento de água. Semina: Ciências Agrária, 33(6), 2657-2667. http://www.uel.br/revistas/uel/index.php/semagrarias/article/view/8200
Feldman, A. B., Leung, H., Baraoidan, M., Elmido-Mabilangan, A., Canicosa, I., Quick, W. P., Sheehy, J., & Murchie, E. H. (2017). Increasing leaf vein density via mutagenesis in rice results in an enhanced rate of photosynthesis, smaller cell sizes and can reduce interveinal mesophyll cell number. Frontiers in Plant Science, 8, 1-10. https://doi.org/10.3389/fpls.2017.01883
Feng, G., Zhang, Z., Wan, C., Lu, P., & Bakour, A. (2017). Effects of saline water irrigation on soil salinity and yield of summer maize (Zea mays L.) in subsurface drainage system. Agricultural Water Management, 193, 205-213. https://doi.org/10.1016/j.agwat.2017.07.026
Ferreira, D. F. Sisvar: a guide for its bootstrap procedures in multiple comparisons. (2014). Ciência e Agrotecnologia, 38(2), 109-112. http://dx.doi.org/10.1590/S1413-70542014000200001
Flowers T. J, & Colmer T. D. 2008. Salinity tolerance in halophytes. New Phytologist, 179, 945-963. http://dx.doi:10.1111/j.1469-8137.2008.02531.x
Gomes, K. R., Sousa, G. G., Lima, F. A., Viana, T. V. A., Azevedo, B. M., & Silva, G. L. (2015). Irrigação com água salina na cultura do girassol (Helianthus annuus L.) em solo com biofertilizante bovino. Irriga, 20(4), 680-693. http://dx.doi.org/10.15809/irriga.2015v20n4p680
Guedes Filho, D. H., Santos, J. B., Gheyi, H. R., Cavalcante, L. F., & Santos Júnior, J. A. (2015). Componentes de produção e rendimento do girassol sob irrigação com águas salinas e adubação nitrogenada. Irriga, 20(3), 514-527. http://dx.doi.org/10.15809/irriga.2015v20n3p514
Habibi, G. (2017). Physiological, photochemical and ionic responses of sunflower seedlings to exogenous selenium supply under salt stress. Acta Physiologiae Plantarum, 39(213), 1-9. https://doi.org/10.1007/s11738-017-2517-3
Jägerbrand, A. K., & Kudo, G. (2016). Short-term responses in maximum quantum yield of PSII (Fv/Fm) to ex situ temperature treatment of populations of bryophytes originating from different sites in Hokkaido, northern Japan. Plants, 5(22), 1-7. https://doi.org/10.3390/plants5020022
Koche, J. C. (2011). Fundamentos de metodologia científica. Petrópolis: Vozes. http://www.adm.ufrpe.br/sites/ww4.deinfo.ufrpe.br/files/F undamentos_de_Metodologia_Cienti%CC%81fica.pdf
Kozai, T. (2016). Why LED lighting for urban agriculture? LED lighting for urban agriculture. Springer Singapore.
Lambers H, Chapin F. S., & Pons T. L. (2008). Plant water relations. Plant physiological ecology. Springer New York.
Lira, R. M., Santos, A. N., Silva, J. S., Barnabé, J. M. C., Barros, M. S., & Soares, H. R. (2015). A utilização de águas de qualidade inferior na agricultura irrigada. Revista Geama – Environmental Science, 1(3), 841-862. Disponível em: http://www.journals.ufrpe.br/index.php/geama/article/view/514/1438
Lustri, E. A., Silva, B. T., Peruchi, D. R. E., Moura, I. A., & Fluminhan, A. (2017). Avaliação do desempenho agronômico de cultivares de girassol (Helianthus annuus L.) no cultivo em safrinha na região Oeste Paulista. Forúm Ambiental da Alta Paulista, 13(1), 37-51. http://dx.doi.org/10.17271/1980082713120171488
Maia, F. M. A., Costa, A. C., Castro, J. N., & Megguer, C. A. (2012). Trocas gasosas em plantas de girassol submetidas à sainidade. In: V Congresso Brasileiro de Mamona, II Simpósio Internacional de Oleaginosas Energéticas & I Fórum Capixaba de Pinhão Manso, 2012, Guarapari. Desafios e Oportunidades: Anais... Campina Grande: Embrapa Algodão, 196.
Makbul, S., Saruhan-Guler, N., Durmus, N, & Guven, S. (2011). Changes in Anatomical and Physiological Parameters of Soybean Under Drought Stress. Turk. J. Bot. 35(4), 369-377. http://dx.doi.org/10.3906/bot-1002-7
Maxwell, K., & Johnson, G. N. (2000). Chlorophyll fluorescence - a practical guide. Journal of Experimental Botany, 51(345), 659-668. https://doi.org/10.1093/jexbot/51.345.659
Melo, H. F. D., Souza, E. R. D., Duarte, H. H., Cunha, J. C., & Santos, H. R. (2017). Gas exchange and photosynthetic pigments in bell pepper irrigated with saline water. Revista Brasileira de Engenharia Agrícola e Ambiental, 21(1), 38-43. http://dx.doi.org/10.1590/1807-1929/agriambi.v21n1p38-43
Mengis, N., Keller, D. P., Eby, M., & Oschlies, A. (2015). Uncertainty in the response of transpiration to CO2 and implications for climate change. Environmental Research Letters, 10(9), 1-9. http://dx.doi.org/10.1088/1748-9326/10/9/094001
Mila, A. J., Ali, M. H., Akanda, A. R., Rashid, M. H. O., & Rahman, M. A. (2017). Effects of deficit irrigation on yield, water productivity and economic return of sunflower. Congent Food & Agriculture, 3, 1-14. https://doi.org/10.1080/23311932.2017.1287619
Miorini, T. J. J., Saad, J. C. C., & Menegale, M. L. (2011). Supressão de água em diferentes fases fenológicas do feijoeiro (Phaseolus vulgaris L.). Irriga, 16(4), 360-368. http://dx.doi.org/10.15809/irriga.2011v16n4p360
Mota, C. S., & Cano, M. A. O. (2016). Respostas fisiológicas de plantas jovens de macaúba a condições de seca cíclica. Pesquisa Florestal Brasileira, 36(87), 225-234. https://doi.org/10.4336/2016.pfb.36.87.1061
Patane, C., Cosentino, S. L., & Anastasi, U. (2017). Sowing time and irrigation scheduling effects on seed yield and fatty acids profile of sunflower in semi-arid climate. International Journal of Plant Production, 11(1), 17-32. https://dx.doi.org/10.22069/ijpp.2017.3307
Pereira A. S. et al. (2018). Metodologia da pesquisa científica. UFSM. https://repositorio.ufsm.br/bitstream/handle/1/15824/Lic_Computacao_Metodologia-Pesquisa-Cientifica.pdf?sequence=1
Richards, L. A. (1954). Diagnosis and improvement of saline and alkali soils. Agricultural Handbook 60. Washington D.C.: U.S. Salinity Laboratory, 1954, 160p. https://www.ars.usda.gov/ARSUserFiles/20360500/hb60_pdf/hb60complete.pdf
Ruan C. J, da Silva J. A. T, Mopper S, Qin P, & Lutts S. (2010). Halophyte improvement for a salinized world. Critical Reviews in Plant Sciences, 29, 329-359. http://dx.doi:10.1080/07352689.2010.524517
Santos Júnior, J. A., Gheyi, H. R., Cavalcante, A. R., Dias, N. S., & Medeiros, S. S. (2018). Produção e pós-colheita de flores de girassóis sob estresse salino em hidroponia de baixo custo. Engenharia Agrícola, 36, 3, 420-432. http://www.scielo.br/pdf/eagri/v36n3/1809-4430-eagri-36-3-0420.pdf
Santos, M. R., & Brito, C. F. B. Irrigação com água salina, opção agrícola consciente. Revista Agrotecnologia, 7(1), 33-41. http://www.revista.ueg.br/index.php/agrotecnologia/article/download/5175/pdf
Shabala, S. (2017). Plant stress physiology. Centre for Agriculture and Biosciences International.
Shoukat, E., Aziz, I., Ahmed, M. Z., Abideen, Z., & Khan, M. A. (2018). Growth patterns of Phragmites karka under saline conditions depend on the bulk elastic modulus. Crop and Pasture Science, 69(5), 535-545. https://doi.org/10.1071/CP17195
Taiz, L., & Zeiger, E. (2012). Fisiologia vegetal. (5a ed.), Artmed.
Torabian, S., Zahedi, M., & Khoshgoftar, A. H. (2016). Effects of foliar spray of two kinds of zinc oxide on the growth and ion concentration of sunflower cultivars under salt stress. Journal of plant nutrition, 39(2), 172-180. https://doi.org/10.1080/01904167.2015.1009107
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2021 Alisson Macendo Amaral; Alefe Viana Souza Bastos; Maria Ângela Cruz Macêdo dos Santos; Marconi Batista Teixeira; Frederico Antonio Loureiro Soares
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Autores que publicam nesta revista concordam com os seguintes termos:
1) Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
2) Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
3) Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado.