Atividade antifúngica, antibiofilme, sinergismo e docking molecular do óleo essencial de Allium sativum contra isolados clínicos de C. albicans

Autores

DOI:

https://doi.org/10.33448/rsd-v10i12.20457

Palavras-chave:

Patogênese; Biofilmes; Modelagem; Virulência; Micologia.

Resumo

O objetivo do presente estudo foi investigar a atividade biológica do óleo essencial de A. sativum contra isolados clínicos de C. albicans e, além disso, um estudo computacional da ação de dois compostos principais do óleo essencial sobre a proteína do fungo CYP51. A Concentração Inibitória Mínima e a Concentração Fungicida Mínima foram determinadas pelo método da microdiluição em caldo. A formação de biofilme foi avaliada por quantificação de biomassa usando o método de coloração com cristal violeta. Para o estudo de docking molecular, simulações de computador de interação entre CYP51 e ligantes foram realizadas usando o código AutoDock Vina. Os principais constituintes foram dissulfeto de dialila, seguido por dissulfeto de dialila. O óleo essencial demonstrou atividade contra isolados clínicos de C. albicans. O óleo essencial apresentou redução progressiva e aumento da biomassa produzida a partir dos biofilmes de todas as leveduras testadas neste estudo. Os ligantes dissulfeto de dialila, trissulfeto de dialila e fluconazol formaram complexos com a proteína alvo. Com base nos resultados, o óleo essencial de A. sativum pode ser considerado produto promissor para o desenvolvimento de novos fármacos na prevenção de infecções associadas a C. albicans. Este estudo caracteriza os efeitos do óleo essencial de A. sativum contra isolados clínicos de C. albicans responsáveis pelo desenvolvimento de patologias em humanos.

Referências

A. Hess and L. Smentek, “The concerted nature of the cyclization of squalene oxide to the protosterol cation,” Angew. Chemie - Int. Ed., 2013, doi: 10.1002/anie.201302886.

Aala F, Yusuf UM, Khodavandi A & Jamal F (2010) In vitro antifungal activity of allicin alone and in combination with two medications against six dermatophytic fungi. Afr J Microbiol Res 4: 380–385.

Alorainy, M. S. (2011). Evaluation of antimicrobial activity of garlic (Allium sativum) against E. coli O 157:H 7. Journal of Agriculture and Veterinary Science, 4, 149–157

Amin M, Kapadnis BP. Heat stable antimicrobial activity of Allium ascalonicum against bacteria and fungi. Indian J Exp Biol. 2005; 43(8):751-4.

Amin M, Kapadnis BP. Heat stable antimicrobial activity of Allium ascalonicum against bacteria and fungi. Indian J Exp Biol. 2005; 43(8):751-4.

An M, Shen H, Cao Y, Zhang J, Cai Y, Wang R & Jiang Y (2009) Allicin enhances the oxidative damage effect of amphotericin B against Candida albicans. Int J Antimicrob Ag 33: 258–263.

Ankri S & Mirelman D (1999) Antimicrobial properties of allicin from garlic. Microbes Infect 1: 125–129.

Armstrong-James D., Brown G.D., Netea M.G., Zelante T., Gresnigt M., van de Veerdonk F., Levitz S.M (2017) Immunotherapeutic approaches to treatment of fungal diseases. Lancet Infect Dis 17, 393-402.

Banerjee, S. K., Mukherjee, P. K., & Maulik, S. K. (2003). Garlic as an antioxidant: The good, the bad and the ugly. Phytotherapy Research, 17, 97–106.

Behbahani B A, Fooladi A A I. Evaluation of phytochemical analysis and antimicrobial activities Allium essential oil against the growth of some microbial pathogens. Microbial Pathogenesis, 2017.

Behbahani B A, Fooladi A A I. Evaluation of phytochemical analysis and antimicrobial activities Allium essential oil against the growth of some microbial pathogens. Microbial Pathogenesis, 2017.

Block, E., Naganathan, S., Putman, D., & Zhao, S.-H. (1993). Organo-sulfur chemistry of garlic and onion: Recent results. Pure and Applied Chemistry, 65, 625–632.

Borlinghaus, J., Albrecht, F., Gruhlke, M. C. H., Nwachukwu, I. D., & Slusarenko, A. J. (2014). Allicin: Chemistry and biological properties. Molecules, 19, 12591–12618.

C. Milite et al., “Novel 2-substituted-benzimidazole-6-sulfonamides as carbonic anhydrase inhibitors: synthesis, biological evaluation against isoforms I, II, IX and XII and molecular docking studies,” J. Enzyme Inhib. Med. Chem., 2019, doi: 10.1080/14756366.2019.1666836.

Capasso, A. (2013). Antioxidant action and therapeutic efficacy of Allium sativum L. Molecules, 18, 690–700.

Casella, S. et al. The role of diallyl sulfides and dipropyl sulfides in the in vitro antimicrobial activity of the essential oil of garlic, Allium sativum L., and leek, Allium porrum L. Phytotherapy Research, 2012.

Chen, S., Shen, X., Cheng, S., Li, P., Du, J., Chang, Y., & Meng, H. (2013). Evaluation of garlic cultivars for polyphenolic content and antioxidant properties. PLoS ONE, 8, e79730.

Clinical and Laboratory Standards Institute, 2008a. Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts (Approved Standard. Document M27. CLSI). Third ed. vol. M27-A3. Clinical and Laboratory Standards Institute, Wayne, PA.

Clinical and Laboratory Standards Institute, 2008b. Reference Method for Broth Dilution Antifungal Susceptibility Testing of Filamentous Fungi (Approved Standard. Document M38. CLSI). Second ed. vol. M38-A2. Clinical and Laboratory Standards Institute, Wayne, PA

Cohain, JS. Cases series: Symptomatic Group B Rev. Bras. Pl. Med., Campinas, v.16, n.3, supl. I, p.679-684, 2014. Streptococcus vaginitis treated with fresh garlic. Integrative Medicine, v.9, n.3, p. 40-3, 2010.

D. S. Biovia et al., “Dassault Systèmes BIOVIA, Discovery Studio Visualizer, v.17.2, San Diego: Dassault Systèmes, 2016. ,” J. Chem. Phys., 2000, doi: 10.1016/0021-9991(74)90010-2.

D. Yusuf, A. M. Davis, G. J. Kleywegt, and S. Schmitt, “An alternative method for the evaluation of docking performance: RSR vs RMSD,” J. Chem. Inf. Model., vol. 48, no. 7, pp. 1411–1422, 2008, doi: 10.1021/ci800084x.

E. F. Pettersen et al., “UCSF Chimera - A visualization system for exploratory research and analysis,” J. Comput. Chem., vol. 25, no. 13, pp. 1605–1612, 2004, doi: 10.1002/jcc.20084.

F. W. Q. Almeida-Neto et al., “Characterization of the structural, spectroscopic, nonlinear optical, electronic properties and antioxidant activity of the N-{4’-[(E)-3-(Fluorophenyl)-1-(phenyl)-prop-2-en-1-one]}-acetamide,” J. Mol. Struct., vol. 1220, p. 128765, 2020, doi: 10.1016/j.molstruc.2020.128765.

FAO (2013). Production and trade statistics.Rome, Italy: FAO.

Fasihzadeh S, Lorigooini Z, Jivad N. Chemical constituents of Allium stipitatum regel 341 (persian shallot) essential oil. Der Pharmacia Lettre. 2016; 8:175-80.

Fontenelle, R. O. S.; Morais, S. M.; Brito, E. H. S.; Mendonça, M. R. K.; Brilhante, R. S. N.; Cordeiro, R. A. N.; Nascimento, N. R. F.; Sidrim, J. J. C.; Rocha, M. F. G. Chemical composition, toxicological aspects and antifungal activity of essential oil from Lippia sidoides Cham. Journal of Antimicrobial Chemotherapy, v. 59, n. 5, p. 934-940, 2007.

Fontenelle, R.O.S., Morais, S.M., Brito, E.H.S., Brilhante, R.S.N., Cordeiro, R.A., Nascimento, N.R.F., Kerntopf, M.R., Sidrim, J.J.C., Rocha, M.F.G., (2008). Antifungal activity of essential oils of Croton species from the Brazilian Caatinga biome. J. Appl. Microbiol. 104, 1383–1390.

Galdiero E, Onofrio V D, Maione A, Gambino E, Gesuele R, Menale B, Ciaravolo M, Carraturo, Guida M. Allium ursinum and Allium oschaninii against Klebsiella pneumoniae and Candida albicans Mono- and Polymicrobic Biofilms in In Vitro Static and Dynamic Models. Microorganisms 27;8(3):336, 1-12, 2020.

Guo N, Wu X, Yu L, Liu J, Meng R, Jin J, Lu H, Wang X, Yan S & Deng X (2010) In vitro and in vivo interactions between fluconazole and allicin against clinical isolates of fluconazoleresistant Candida albicans determined by alternative methods. FEMS Immunol Med Microbiol 58: 193–201.

Hornícˇková, J., Kubec, R., Cejpek, K., Velíšek, J., Ovesná, J., & Stavelíková, H. (2010). Profiles of S-alk(en)ylcysteine sulfoxides in various garlic genotypes. Czech Journal of Food Sciences, 28(4), 298–308.

Imberty, K. D. Hardman, J. P. Carver, and S. Perez, “Molecular modelling of protein-carbohydrate interactions. Docking of monosaccharides in the binding site of concanavalin A,” Glycobiology, 1991, doi: 10.1093/glycob/1.6.631.

J. J. P. Stewart, “Optimization of parameters for semiempirical methods VI: More modifications to the NDDO approximations and re-optimization of parameters,” J. Mol. Model., 2013, doi: 10.1007/s00894-012-1667-x.

Khodavandi A, Alizadeh F, Aala F, Sekawi Z & Chong PP (2010) In vitro investigation of antifungal activity of allicin alone and in combination with azoles against Candida species. Mycopathologia 169: 287–295.

Kumar, R., Chhatwal, S., Arora, S., Sharma, S., Singh, J., Singh, N., Khurana, A. (2013). Antihyperglycemic, antihyperlipidemic, anti-inflammatory and adenosine deaminase-lowering effects of garlic in patients with type 2 diabetes mellitus with obesity. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy, 6, 49–56.

L. Colombo et al., “Brazilian guidelines for the management of candidiasis - a joint meeting report of three medical societies: Sociedade Brasileira de Infectologia, Sociedade Paulista de Infectologia and Sociedade Brasileira de Medicina Tropical,” Brazilian J. Infect. Dis., 2013, doi: 10.1016/j.bjid.2013.02.001.

Lanzotti, V., Scala, F., & Bonanomi, G. (2014). Compounds from Allium species with cytotoxic and antimicrobial activity. Phytochemistry Reviews, 13, 769–791.

Lanzotti, V., Scala, F., & Bonanomi, G. (2014). Compounds from Allium species with cytotoxic and antimicrobial activity. Phytochemistry Reviews, 13, 769–791.

Lemar KM, Passa O, Aon MA, Cortassa S,M¨uller CT, Plummer S, O’Rourke B & Lloyd D (2005) Allyl alcohol and garlic (0) extract produce oxidative stress in Candida albicans. Microbiology 151: 3257–3265.

Lemar KM, Turner MP & Lloyd D (2002) Garlic (Allium sativum) as an anti-Candida agent: a comparison of the efficacy of fresh garlic and freeze-dried extracts. J Appl Microbiol 93: 398–405.

Li G, Ma X, Deng L, et al. Fresh garlic extract enhances the antimicrobial activities of antibiotics on resistant strains in vitro. Jundishapur J Microbiol 2015; 8: e14814. DOI: 10.5812/jjm.14814

Li Wen-Ru, Shi Qing-Shan, Dai Huan-Qin, Liang Qing, Xie Xiao-Bao, Huang Xiao-Mo, Zhao Guang-Ze, Zhang Li-Xin. Antifungal activity, kinetics and molecular mechanism of action of garlic oil against Candida albicans. Scientific Reports | 6:22805.

Li WR, Shi QS, Dai HQ, et al. Antifungal activity, kinetics and molecular mechanism of action of garlic oil against Candida albicans. Sci Rep 2016; 6: 22805. DOI: 10.1038/ srep22805

Lima, C.M.B.L. et al. Ultrastructural study on the morphological changes to male worms of Schistosoma mansoni after in vitro exposure to allicin. Revista da Sociedade Brasileira de Medicina Tropical, v.44, n.3, p.327-30, 2011.

Low CF, Chong PP, Yong PVC, Lim CSY, Ahmad Z & Othman F (2008) Inhibition of hyphae formation and SIR2 expression in Candida albicans treated with fresh Allium sativum (garlic) extract. J Appl Microbiol 105: 2169–2177.

M. V. Keniya et al., “Crystal Structures of Full-Length Lanosterol 14α-Demethylases of Prominent Fungal Pathogens Candida albicans and Candida glabrata Provide Tools for Antifungal Discovery,” Antimicrob. Agents Chemother., 2018, doi: 10.1128/AAC.01134-18.

Mantawy, M.M. et al. Therapeutic Effects of Allium sativum and Allium cepa in Schistosoma mansoni experimental infection. Revista do Instituto de Medicina Tropical de São Paulo, v.53, n.3, p.155-63, 2011.

Medici N, Poeta M. New insight on the development on fungal vaccines: from immunity to recent challenges. Mem Inst Oswaldo Cruz 2015;110:966e73.

Miron T, Bercovici T, Rabinkov A, Wilchek M & Mirelman D (2004) [3H]Allicin: preparation and applications. Anal Biochem 331: 364–369.

Nami S, Mohammadi R, Vakili M, Khezripour K, Mirzael H, Morovati H. Fungal vaccines, mechanism of actions and immunology: a comprehensive review. Biomed Pharm 2018; 109:333e44.

O. Trott and A. J. Olson, “AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading,” J. Comput. Chem., 2009, doi: 10.1002/jcc.21334.

P. Schimmel, J. Tao, and J. Hill, “Aminoacyl tRNA synthetases as targets for new anti‐infectives,” FASEB J., 1998, doi: 10.1096/fasebj.12.15.1599.

Q. Guo, S. Sun, J. Yu, Y. Li, and L. Cao, “Synergistic activity of azoles with amiodarone against clinically resistant Candida albicans tested by chequerboard and time-kill methods,” J. Med. Microbiol., 2008, doi: 10.1099/jmm.0.47651-0.

S. Shityakov and C. Förster, “In silico predictive model to determine vector-mediated transport properties for the blood-brain barrier choline transporter,” Adv. Appl. Bioinforma. Chem., vol. 7, no. 1, pp. 23–36, 2014, doi: 10.2147/AABC.S63749.

S. Silva, M. Negri, M. Henriques, R. Oliveira, D. W. Williams, and J. Azeredo, “Candida glabrata, Candida parapsilosis and Candida tropicalis: Biology, epidemiology, pathogenicity and antifungal resistance,” FEMS Microbiology Reviews. 2012, doi: 10.1111/j.1574-6976.2011.00278.x.

S. Stepanovic, D. Vukovic, I. Dakic, B. Savic, M. Svabic-Vlahovic, A modified microtiter-plate test for quantification of staphylococcal biofilm formation, J. Microbiol. Methods 40 (2) (2000) 175–179

Sakagami T, Kawano T, Yamashita K, Ymada E, Fujino N, Kaeriyama M, et al. Antifungal susceptibility trend and analysis of resistance mechanism for Candida species isolated from bloodstream at a Japanese university hospital. J Infect Chemother 2019;25:34 e40.

Shams-Ghahfarokhi M, Shokoohamiri MR, Amirrajab N, Moghadasi B, Ghajari A, Zeini F, et al. In vitro antifungal activities of Allium cepa, Allium sativum and ketoconazole against some pathogenic yeasts and dermatophytes. Fitoterapia. 2006; 77(4):321-3. 24.

Shams-Ghahfarokhi M, Shokoohamiri MR, Amirrajab N, Moghadasi B, Ghajari A, Zeini F, et al. In vitro antifungal activities of Allium cepa, Allium sativum and ketoconazole against some pathogenic yeasts and dermatophytes. Fitoterapia. 2006; 77(4):321-3. 24.

Shields, R.K.; Nguyen, M.H.; Press, E.G.; Kwa, A.L.; Cheng, S.; Du, C.; Clancy, C.J. The presence of na FKS mutation rather than MIC is an independent risk factor for failure of echinocandin therapy among patients with invasive candidiasis due to Candida glabrata. Antimicrob. Agents Chemother. 2012, 56, 4862–4869.

Silva, J.L. et al. Atividade antifúngica de extratos vegetais sobre o crescimento in vitro de fitopatógenos. Revista verde de agroecologia e desenvolvimento sustentável, v. 7, n.1, p. 80-6, 2012.

Song, J., Zhang, S., Lu, L. Fungal cytochrome P450 protein Cyp51: What we can learn from its evolution, regulons and Cyp51-based azole resistance. Fungal Biology Reviews, v. 32 (3), p. 131-142, 2018.

V. Sueth-Santiago, T. N. Franklim, N. D. Lopes, and M. E. F. Lima, “CYP51: Is it a good idea?,” Rev. Virtual Quim., vol. 7, no. 2, pp. 539–575, 2015, doi: 10.5935/1984 6835.20150024.

Venturoso, L.R. et al. Atividade antifúngica de extratos vegetais sobre o desenvolvimento de fitopatógenos. Summa Phytopathologica, v.37, n.1, p.18-23, 2011.

Yamada Y &Azuma K (1977) Evaluation of the in vitro antifungal activity of allicin. Antimicrob Agents Ch 11: 743–749

Zainal, M, Zain NM, Amin IM, Ahmad VN. The antimicrobial and antibiofilme properties of allicin against Candida albicans and Staphylococcus aureus – A therapeutic potential for denture stomatitis. The Saudi Dental Journal, 2020.

Downloads

Publicado

23/09/2021

Como Citar

PEREIRA, R. .; MENDES, J. de F. S. .; FONTENELLE, R. O. dos S. .; RODRIGUES, T. H. S. .; SANTOS, H. S. dos .; MARINHO, E. S. .; MARINHO, M. M. .; MORAIS, S. M. de . Atividade antifúngica, antibiofilme, sinergismo e docking molecular do óleo essencial de Allium sativum contra isolados clínicos de C. albicans. Research, Society and Development, [S. l.], v. 10, n. 12, p. e313101220457, 2021. DOI: 10.33448/rsd-v10i12.20457. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/20457. Acesso em: 5 jan. 2025.

Edição

Seção

Ciências Agrárias e Biológicas