Resíduos sólidos urbanos de poda de gramíneas como fonte alternativa de energia: um estudo de caso na cidade de Rosana

Autores

DOI:

https://doi.org/10.33448/rsd-v10i13.20803

Palavras-chave:

Biomassa; Resíduo Sólido Urbano; PCS; Bioenergia; Potencial energético.

Resumo

O objetivo deste trabalho foi estudar os resíduos sólidos urbanos de poda de gramíneas (RSPG) do Distrito de Primavera, no município de Rosana-SP através de métodos gravimétricos e calorimétrico para avaliar a viabilidade de utilização como fonte de energia em processos de combustão direta. As amostras de RSPG foram coletadas, lavadas, secas ao ar por 24h, fracionadas em moinho de facas e selecionadas em peneira granulométrica antes das análises gravimétricas e calorimétrica. Foram realizadas análises de umidade, sólidos totais, extrativos aquoso e alcoólico, cinzas, inorgânicos estruturais e não-estruturais, inorgânicos totais e poder calorífico superior (PCS). O processo de extração aquosa e alcoólica foram realizados em banho ultrassônico e apresentaram os valores de 14,32 ± 0,28 % para os extrativos aquosos e 6,65 ± 0,40 % para os extrativos alcoólicos. As amostras apresentaram valores de inorgânicos estruturais e inorgânicos não estruturais de 2,97±0,17% e 1,26±0,12%, respectivamente. O RSPG apresentou ser alternativa como combustível sólido ao apresentar um valor de PCS de 17,59±0,43 MJ kg-1 que é similar a outros resíduos sólidos.

Referências

Alonso-Riaño, P., Sanz Diez, M. T., Blanco, B., Beltrán, S., Trigueros, E., & Benito-Román, O. (2020). Water Ultrasound-Assisted Extraction of Polyphenol Compounds from Brewer’s Spent Grain: Kinetic Study, Extract Characterization, and Concentration. Antioxidants, 9(3), 265. https://doi.org/10.3390/antiox9030265.

ANEEL. (2018). Relatório de desempenho das usinas termoelétricas despachadas centralizadamente – TIPOS I E IIA (Issue 12). Agência Nacional De Energia Elétrica - ANEEL.

Canettieri, E. V., da Silva, V. P., Neto, T. G. S., Hernández-Pérez, A. F., da Silva, D. D. V., Dussán, K. J., das Graças Almeida Felipe, M., & de Carvalho, J. A. (2018). Physicochemical and thermal characteristics of sugarcane straw and its cellulignin. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 40(9), 416. https://doi.org/10.1007/s40430-018-1331-1.

Coelho, R. D., Lizcano, J. V., da Silva Barros, T. H., da Silva Barbosa, F., Leal, D. P. V., da Costa Santos, L., Ribeiro, N. L., Júnior, E. F. F., & Martin, D. L. (2019). Effect of water stress on renewable energy from sugarcane biomass. Renewable and Sustainable Energy Reviews, 103(April 2018), 399–407. https://doi.org/10.1016/j.rser.2018.12.025.

de Sousa, M. H., da Silva, A. S. F., Correia, R. C., Leite, N. P., Bueno, C. E. G., dos Santos Pinheiro, R. L., de Santana, J. S., da Silva, J. L., Sales, A. T., de Souza, C. C., da Silva Aquino, K. A., de Souza, R. B., Pinheiro, I. O., Henríquez, J. R., Schuler, A. R. P., de Sá Barretto Sampaio, E. V., Dutra, E. D., & Menezes, R. S. C. (2021). Valorizing municipal organic waste to produce biodiesel, biogas, organic fertilizer, and value-added chemicals: an integrated biorefinery approach. Biomass Conversion and Biorefinery. https://doi.org/10.1007/s13399-020-01252-5.

Dias, A. F., Arthuso, H., Lana, A. Q., Andrade, C. R., Brito, J. O., & Júnior, G. B. (2021). Addition of Eucalyptus sp wood to urban wood waste as a strategy for energetic use. Scientia Forestalis/Forest Sciences, 49(129), 1–11. https://doi.org/10.18671/SCIFOR.V49N129.05.

Du, L., Arauzo, P. J., Meza Zavala, M. F., Cao, Z., Olszewski, M. P., & Kruse, A. (2020). Towards the properties of different biomass-derived proteins via various extraction methods. Molecules, 25(3), 488. https://doi.org/10.3390/molecules25030488.

Empresa de Pesquisa Energética. (2021). Balanço Energético Nacional. Empresa de Pesquisa Energética. https://www.epe.gov.br/pt/publicacoes-dados-abertos/publicacoes/balanco-energetico-nacional-2021.

Enes, T., Aranha, J., Fonseca, T., Lopes, D., Alves, A., & Lousada, J. (2019). Thermal properties of residual agroforestry biomass of northern Portugal. Energies, 12(8), 1418. https://doi.org/10.3390/en12081418.

Evaristo, R. B. W., Viana, N. A., Guimarães, M. G., do Vale, A. T., de Macedo, J. L., & Ghesti, G. F. (2020). Evaluation of waste biomass gasification for local community development in central region of Brazil. Biomass Conversion and Biorefinery. https://doi.org/10.1007/s13399-020-00821-y.

Galhano dos Santos, R., Bordado, J. C., & Mateus, M. M. (2018). Estimation of HHV of lignocellulosic biomass towards hierarchical cluster analysis by Euclidean’s distance method. Fuel, 221(February), 72–77. https://doi.org/10.1016/j.fuel.2018.02.092.

Gomes, L., Miranda, H. S., Soares-Filho, B., Rodrigues, L., Oliveira, U., & Bustamante, M. M. C. (2020). Responses of Plant Biomass in the Brazilian Savanna to Frequent Fires. Frontiers in Forests and Global Change, 3(November), 1–11. https://doi.org/10.3389/ffgc.2020.507710.

Google. (2021). Mapa do Distrito de Primavera, Rosana-SP. Google Maps. https://www.google.com.br/maps/@-22.5359732,-52.9514191,2755m/data=!3m1!1e3?hl=pt-BR.

Haidar, D. (2021). Maior hidrelétrica de SP atinge “0%” do reservatório e chega ao volume morto. https://www.metropoles.com/brasil/maior-hidreletrica-de-sp-atinge-0-do-reservatorio-e-chega-ao-volume-morto.

Hames, B., Ruiz, R., Scarlata, C., Sluiter, A., Sluiter, J., & Templeton, D. (2008). Preparation of Samples for Compositional Analysis: Laboratory Analytical Procedure (LAP) (TP-510-42620). National Renewable Energy Laboratory. https://www.nrel.gov/bioenergy/biomass-compositional-analysis.html.

Hiloidhari, M., & Baruah, D. C. (2011). Crop residue biomass for decentralized electrical power generation in rural areas (part 1): Investigation of spatial availability. Renewable and Sustainable Energy Reviews, 15(4), 1885–1892. https://doi.org/10.1016/j.rser.2010.12.010.

La Picirelli de Souza, L., Rajabi Hamedani, S., Silva Lora, E. E., Escobar Palacio, J. C., Comodi, G., Villarini, M., & Colantoni, A. (2021). Theoretical and technical assessment of agroforestry residue potential for electricity generation in Brazil towards 2050. Energy Reports, 7, 2574–2587. https://doi.org/10.1016/j.egyr.2021.04.026.

Miranda, R. B. de, Scarpinella, G. D., & Mauad, F. F. (2013). Influência do assoreamento na capacidade de armazenamento do Reservatório da usina hidrelétrica de Três Irmãos (SP/BRASIL). Revista Recursos Hídricos, 34(2), 69–79. https://doi.org/10.5894/rh34n2-6.

Pereira, A. S., Shitsuka, D. M., Parreira, F. J., & Shitsuka, R. (2018). Metodologia da Pesquisa Científica. [free e-book]. Santa Maria: UAB/NTE/UFSM.

https://repositorio.ufsm.br/bitstream/handle/1/15824/Lic_Computacao_Metodologia-Pesquisa-Cientifica.pdf?sequence=1

Silva, J. B. S. da, Torquato, L. D. M., Crnkovic, P. M., & Cruz, G. (2021). INVESTIGATION OF THE URBAN PRUNING WASTES AS BIOFUELS AND POSSIBLE UTILIZATION IN THERMAL SYSTEMS / INVESTIGAÇÃO DOS RESÍDUOS DA PODA URBANA COMO BIOCOMBUSTÍVEIS E POSSÍVEL UTILIZAÇÃO EM SISTEMAS TÉRMICOS. Brazilian Journal of Development, 7(3), 24730–24750. https://doi.org/10.34117/bjdv7n3-265.

Sluiter, A., Hames, B., Hyman, D., Payne, C., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D., & Wolfe, J. (2008). Determination of total solids in biomass and total dissolved solids in liquid process samples: Laboratory Analytical Procedure (LAP) (TP-510-42621). National Renewable Energy Laboratory. https://www.nrel.gov/bioenergy/biomass-compositional-analysis.html.

Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., & Templeton, D. (2008). Determination of Ash in Biomass: Laboratory Analytical Procedure (LAP) (TP-510-42622). National Renewable Energy Laboratory. https://www.nrel.gov/bioenergy/biomass-compositional-analysis.html.

Sluiter, A., Ruiz, R., Scarlata, C., Sluiter, J., & Templeton, D. (2008). Determination of Extractives in Biomass: Laboratory Analytical Procedure (LAP) (TP-510-42619). National Renewable Energy Laboratory. https://www.nrel.gov/bioenergy/biomass-compositional-analysis.html.

Vallejo, F., Díaz-Robles, L., Vega, R., Cubillos, F., Espinoza, A. P., Pinilla, F., & Pino-Cortés, E. (2020). An experimental study for municipal organic waste and sludge treated by hydrothermal carbonization. Chemical Engineering Transactions, 81(August), 355–360. https://doi.org/10.3303/CET2081060.

Downloads

Publicado

07/10/2021

Como Citar

MENDONÇA, C.; OLIVEIRA, J. P. J. de; HIRANOBE, C. T.; SANTOS, R. J. dos .; PAIM, L. L. Resíduos sólidos urbanos de poda de gramíneas como fonte alternativa de energia: um estudo de caso na cidade de Rosana. Research, Society and Development, [S. l.], v. 10, n. 13, p. e124101320803, 2021. DOI: 10.33448/rsd-v10i13.20803. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/20803. Acesso em: 5 jan. 2025.

Edição

Seção

Engenharias