Fenotipagem por DNA Forense: um ponto de partida para o modelo de predição na população de Pernambuco, Brasil

Autores

DOI:

https://doi.org/10.33448/rsd-v10i13.20955

Palavras-chave:

Genes de pigmentação; População miscigenada; Brasil; SNPs; Preditores fenotípicos; Inteligência artificial.

Resumo

O estudo das Características Externamente Visíveis (CEV) da pigmentação associada a SNPs (Single Nucleotide Polymorphisms) tornou-se um alvo na área forense devido à possibilidade de caracterizar fenotipicamente um indivíduo. No Brasil, poucos são os dados que mostram a avaliação de alguns desses marcadores, portanto, mais estudos são necessários para entender melhor o processo de pigmentação relacionado aos marcadores genéticos. O objetivo deste estudo foi testar a associação entre 8 SNPs presentes na ferramenta HIrisplex e as CEV para fornecer um ponto de partida para o desenvolvimento de modelos de predição para populações heterogêneas como a de Pernambuco. 176 indivíduos foram avaliados por meio de associações entre dados autorreferidos de cor dos olhos, cabelo e pele e os polimorfismos. Ferramentas de inteligência artificial foram utilizadas para os modelos de predição. Foram encontradas associações significativas entre rs1800404 (OCA2), rs6058017 (ASIP), rs16891982 (SLC45A2) e rs1426654 (SLC24A5) com as CEV. Os modelos de predição avaliados apresentaram índices de predição satisfatórios, acima de 60% para cor da pele e acima de 70% para olhos e cabelos. As associações encontradas em nossos dados mostram a importância da avaliação de SNPs utilizados na Fenotipagem por DNA, por sua capacidade de fornecer novas informações no contexto de investigações criminais. Os dados encontrados indicam que é possível usar informações moleculares para predizer fenótipos em populações miscigenadas, como a brasileira. Esses polimorfismos podem ser possíveis preditores fenotípicos para a população de Pernambuco.

Referências

Adhikari, K., Mendoza-Revilla, J., Sohail, A., Fuentes-Guajardo, M., Lampert, J., Chacón-Duque, J. C., & Ruiz-Linares, A. (2019). A GWAS in Latin Americans highlights the convergent evolution of lighter skin pigmentation in Eurasia. Nature Communications, 10(1), 358. https://doi.org/10.1038/s41467-018-08147-0

Andersen, J. D., Pietroni, C., Johansen, P., Andersen, M. M., Pereira, V., Børsting, C., & Morling, N. (2016). Importance of nonsynonymous OCA2 variants in human eye color prediction. Molecular Genetics & Genomic Medicine, 4(4), 420–430. https://doi.org/10.1002/mgg3.213

Andrade, E. S., Fracasso, N. C. A., Strazza Júnior, P. S., Simões, A. L., & Mendes-Junior, C. T. (2017). Associations of OCA2 - HERC2 SNPs and haplotypes with human pigmentation characteristics in the Brazilian population. Legal Medicine, 24, 78–83. https://doi.org/10.1016/j.legalmed.2016.12.003

Ayres, M; Ayres Jr, M; Ayres, D. L.; Santos, A. de A. dos S. (2007). Bioestat 5.0. Belém; Sociedade Civil Mamirauá: cnpq.

Bellono, N. W., Escobar, I. E., Lefkovith, A. J., Marks, M. S., & Oancea, E. (2014). An intracellular anion channel critical for pigmentation. ELife, 3, e04543. https://doi.org/10.7554/eLife.04543

Bin, B.-H., Bhin, J., Yang, S. H., Shin, M., Nam, Y.-J., Choi, D.-H., & Lee, T. R. (2015). Membrane-Associated Transporter Protein (MATP) Regulates Melanosomal pH and Influences Tyrosinase Activity. PLOS ONE, 10(6), e0129273. https://doi.org/10.1371/journal.pone.0129273

Bonilla, C., Boxill, L.-A., Donald, S. A. M., Williams, T., Sylvester, N., Parra, E. J., & Kittles, R. A. (2005). The 8818G allele of the agouti signaling protein (ASIP) gene is ancestral and is associated with darker skin color in African Americans. Human Genetics, 116(5), 402–406. https://doi.org/10.1007/s00439-004-1251-2

Branicki, W., Brudnik, U., Kupiec, T., Wolañska-Nowak, P., & Wojas-Pelc, A. (2007). Determination of Phenotype Associated SNPs in the MC1R Gene. Journal of Forensic Sciences, 52(2), 349–354. https://doi.org/10.1111/j.1556-4029.2006.00361.x

Canfield, V. A., Berg, A., Peckins, S., Wentzel, S. M., Ang, K. C., Oppenheimer, S., & Cheng, K. C. (2013). Molecular Phylogeography of a Human Autosomal Skin Color Locus Under Natural Selection. G3: Genes|Genomes|Genetics, 3(11), 2059–2067. https://doi.org/10.1534/g3.113.007484

Chaitanya, L., Breslin, K., Zuñiga, S., Wirken, L., Pośpiech, E., Kukla-Bartoszek, M., & Walsh, S. (2018). The HIrisPlex-S system for eye, hair and skin colour prediction from DNA: Introduction and forensic developmental validation. Forensic Science International: Genetics, 35(March), 123–135. https://doi.org/10.1016/j.fsigen.2018.04.004

Chen, B., Cole, J. W., & Grond-Ginsbach, C. (2017). Departure from Hardy Weinberg Equilibrium and Genotyping Error. Frontiers in Genetics, 8(OCT), 1–6. https://doi.org/10.3389/fgene.2017.00167

Cook, A. L., Chen, W., Thurber, A. E., Smit, D. J., Smith, A. G., Bladen, T. G., & Sturm, R. A. (2009). Analysis of Cultured Human Melanocytes Based on Polymorphisms within the SLC45A2/MATP, SLC24A5/NCKX5, and OCA2/P Loci. Journal of Investigative Dermatology, 129(2), 392–405. https://doi.org/10.1038/jid.2008.211

Crawford, N. G., Kelly, D. E., Hansen, M. E. B., Beltrame, M. H., Fan, S., Bowman, S. L., & Tishkoff, S. A. (2017). Loci associated with skin pigmentation identified in African populations. Science, 358(6365), eaan8433. https://doi.org/10.1126/science.aan8433

D??bniak, T., Scott, R., Masojc, B., Serrano-Fernández, P., Huzarski, T., Byrski, T., & Lubinski, J. (2006). MC1R common variants, CDKN2A and their association with melanoma and breast cancer risk. International Journal of Cancer, 119(11), 2597–2602. https://doi.org/10.1002/ijc.22210

de Araújo Lima, F., de Toledo Gonçalves, F., & Fridman, C. (2015). SLC24A5 and ASIP as phenotypic predictors in Brazilian population for forensic purposes. Legal Medicine, 17(4), 261–266. https://doi.org/10.1016/j.legalmed.2015.03.001

Deng, L., & Xu, S. (2018). Adaptation of human skin color in various populations. Hereditas, 155(1), 1. https://doi.org/10.1186/s41065-017-0036-2

Donnelly, M. P., Paschou, P., Grigorenko, E., Gurwitz, D., Barta, C., Lu, R.-B., Kidd, K. K. (2012). A global view of the OCA2-HERC2 region and pigmentation. Human Genetics, 131(5), 683–696. https://doi.org/10.1007/s00439-011-1110-x

Durso, D. F., Bydlowski, S. P., Hutz, M. H., Suarez-Kurtz, G., Magalhães, T. R., & Junho Pena, S. D. (2014). Association of Genetic Variants with Self-Assessed Color Categories in Brazilians. PLoS ONE, 9(1), e83926. https://doi.org/10.1371/journal.pone.0083926

Ensembl. (n.d.). Retrieved from www.ensembl.org

Feng, H., Xia, X., Li, C., Song, Y., Qin, C., Zhang, Y., & Lan, X. (2015). TYR as a multifunctional reporter gene regulated by the Tet-on system for multimodality imaging: an in vitro study. Scientific Reports, 5(1), 15502. https://doi.org/10.1038/srep15502

Fernandez, L., Milne, R., Bravo, J., Lopez, J., Avilés, J., Longo, M., … Ribas, G. (2007). MC1R: three novel variants identified in a malignant melanoma association study in the Spanish population. Carcinogenesis, 28(8), 1659–1664. https://doi.org/10.1093/carcin/bgm084

Fracasso, N. C. de A., de Andrade, E. S., Wiezel, C. E. V., Andrade, C. C. F., Zanão, L. R., da Silva, M. S., & Mendes-Junior, C. T. (2017). Haplotypes from the SLC45A2 gene are associated with the presence of freckles and eye, hair and skin pigmentation in Brazil. Legal Medicine, 25, 43–51. https://doi.org/10.1016/j.legalmed.2016.12.013

Fridman, C., Cardena, M. M. S. G., Lima, F. D. A., & Gonçalves, F. D. T. (2015). Is it possible to use Forensic DNA phenotyping in Brazilian population? Forensic Science International: Genetics Supplement Series, 5, e378–e380. https://doi.org/10.1016/j.fsigss.2015.09.150

Giebel, L. B., & Spritz, R. A. (1990). RFLP for Mbol in the human tyrosinase (TYR) gene detected by PCR. Nucleic Acids Research, 18(10), 3103–3103. https://doi.org/10.1093/nar/18.10.3103-a

Gomes, M. B., Gabrielli, A. B., Santos, D. C., Pizarro, M. H., Barros, B. S. V., Negrato, C. A., & Silva, D. A. (2018). Self-reported color-race and genomic ancestry in an admixed population: A contribution of a nationwide survey in patients with type 1 diabetes in Brazil. Diabetes Research and Clinical Practice, 140, 245–252. https://doi.org/10.1016/j.diabres.2018.03.021

Graf, J., Voisey, J., Hughes, I., & van Daal, A. (2007). Promoter polymorphisms in the MATP ( SLC45A2 ) gene are associated with normal human skin color variation. Human Mutation, 28(7), 710–717. https://doi.org/10.1002/humu.20504

GraphPad Prism version 5.04. (n.d.). Retrieved from (www.graphpad.com).

Gu, Y., Yun, L., Zhang, L., Yang, F., & Hou, Y. (2011). The potential forensic utility of two single nucleotide polymorphisms in predicting biogeographical ancestry. Forensic Science International: Genetics Supplement Series, 3(1), e105–e106. https://doi.org/10.1016/j.fsigss.2011.08.052

Hart, K. L., Kimura, S. L., Mushailov, V., Budimlija, Z. M., Prinz, M., & Wurmbach, E. (2013). Improved eye- and skin-color prediction based on 8 SNPs. Croatian Medical Journal, 54(3), 248–256. https://doi.org/10.3325/cmj.2013.54.248

Hernando, B., Sanz-Page, E., Pitarch, G., Mahiques, L., Valcuende-Cavero, F., & Martinez-Cadenas, C. (2018). Genetic variants associated with skin photosensitivity in a southern European population from Spain. Photodermatology, Photoimmunology & Photomedicine, 34(6), 415–422. https://doi.org/10.1111/phpp.12412

Hohl, D. M., Bezus, B., Ratowiecki, J., & Catanesi, C. I. (2018). Genetic and phenotypic variability of iris color in Buenos Aires population. Genetics and Molecular Biology, 41(1), 50–58. https://doi.org/10.1590/1678-4685-gmb-2017-0175

J Park, AH Talukder, 1 SA Lim, 2 K Kim, 1 K Pan, 1 B Melendez, 1 SD Bradley, 1 KR Jackson, 1 JS Khalili, 1 J Wang, 1 C Creasy, 1 BF Pan, 3 SE Woodman, 1 C Bernatchez, 1 D Hawke, P Hwu, KM Lee, J Roszik, G Lizée, and C. Y., Aboud, K., Kang, H., Cutting, L. E., & Bennett, A. (2016). Medical Image Computing and Computer-Assisted Intervention – MICCAI 2016. In S. Ourselin, L. Joskowicz, M. R. Sabuncu, G. Unal, & W. Wells (Eds.), Cancer Immunol Res. https://doi.org/10.1007/978-3-319-46720-7

Jackson, I. J. (2006). Pigmentary Diversity: Identifying the genes causing human diversity. European Journal of Human Genetics, 14(9), 979–980. https://doi.org/10.1038/sj.ejhg.5201659

Jacobs, L. C., Liu, F., Pardo, L. M., Hofman, A., Uitterlinden, A. G., Kayser, M., & Nijsten, T. (2015). IRF4, MC1R and TYR genes are risk factors for actinic keratosis independent of skin color. Human Molecular Genetics, 24(11), 3296–3303. https://doi.org/10.1093/hmg/ddv076

Jannot, A.-S., Meziani, R., Bertrand, G., Gérard, B., Descamps, V., Archimbaud, A., & Melan-Cohort. (2005). Allele variations in the OCA2 gene (pink-eyed-dilution locus) are associated with genetic susceptibility to melanoma. European Journal of Human Genetics, 13(8), 913–920. https://doi.org/10.1038/sj.ejhg.5201415

K, B., & Purohit, R. (2013). Mutational analysis of TYR gene and its structural consequences in OCA1A. Gene, 513(1), 184–195. https://doi.org/10.1016/j.gene.2012.09.128

Kanetsky, P. A., Swoyer, J., Panossian, S., Holmes, R., Guerry, D., & Rebbeck, T. R. (2002). A Polymorphism in the Agouti Signaling Protein Gene Is Associated with Human Pigmentation. The American Journal of Human Genetics, 70(3), 770–775. https://doi.org/10.1086/339076

Kayser, M. (2015). Forensic DNA Phenotyping: Predicting human appearance from crime scene material for investigative purposes. Forensic Science International: Genetics, 18, 33–48. https://doi.org/10.1016/j.fsigen.2015.02.003

Kayser, M., & Schneider, P. M. (2009). DNA-based prediction of human externally visible characteristics in forensics: Motivations, scientific challenges, and ethical considerations. Forensic Science International: Genetics, 3(3), 154–161. https://doi.org/10.1016/j.fsigen.2009.01.012

Kehdy, F. S. G., Gouveia, M. H., Machado, M., Magalhães, W. C. S., Horimoto, A. R., Horta, B. L., & Tarazona-Santos, E. (2015). Origin and dynamics of admixture in Brazilians and its effect on the pattern of deleterious mutations. Proceedings of the National Academy of Sciences, 112(28), 8696–8701. https://doi.org/10.1073/pnas.1504447112

Koops, B.-J., & Schellekens, M. H. M. (2006). Forensic DNA Phenotyping: Regulatory Issues. SSRN Electronic Journal, 158–202. https://doi.org/10.2139/ssrn.975032

Kukla-Bartoszek, M., Pośpiech, E., Woźniak, A., Boroń, M., Karłowska-Pik, J., Teisseyre, P., & Branicki, W. (2019). DNA-based predictive models for the presence of freckles. Forensic Science International: Genetics, 42(June), 252–259. https://doi.org/10.1016/j.fsigen.2019.07.012

Lamason, R. L. (2005). SLC24A5, a Putative Cation Exchanger, Affects Pigmentation in Zebrafish and Humans. Science, 310(5755), 1782–1786. https://doi.org/10.1126/science.1116238

Leite, T. K. M., Fonseca, R. M. C., França, N. M. de, Parra, E. J., & Pereira, R. W. (2011a). Genomic Ancestry, Self-Reported “Color” and Quantitative Measures of Skin Pigmentation in Brazilian Admixed Siblings. PLoS ONE, 6(11), e27162. https://doi.org/10.1371/journal.pone.0027162

Leite, T. K. M., Fonseca, R. M. C., França, N. M. de, Parra, E. J., & Pereira, R. W. (2011b). Genomic Ancestry, Self-Reported “Color” and Quantitative Measures of Skin Pigmentation in Brazilian Admixed Siblings. PLoS ONE, 6(11), e27162. https://doi.org/10.1371/journal.pone.0027162

Magalhães da Silva, T., Sandhya Rani, M. R., de Oliveira Costa, G. N., Figueiredo, M. A., Melo, P. S., Nascimento, J. F., & Blanton, R. E. (2015). The correlation between ancestry and color in two cities of Northeast Brazil with contrasting ethnic compositions. European Journal of Human Genetics, 23(7), 984–989. https://doi.org/10.1038/ejhg.2014.215

Makova, K., & Norton, H. (2005). Worldwide polymorphism at the MC1R locus and normal pigmentation variation in humans. Peptides, 26(10), 1901–1908. https://doi.org/10.1016/j.peptides.2004.12.032

Maroñas, O., Phillips, C., Söchtig, J., Gomez-Tato, A., Cruz, R., Alvarez-Dios, J., & Lareu, M. V. (2014). Development of a forensic skin colour predictive test. Forensic Science International: Genetics, 13, 34–44. https://doi.org/10.1016/j.fsigen.2014.06.017

Meziani, R., Descamps, V., Gerard, B., Matichard, E., Bertrand, G., Archimbaud, A., & Bassetseguin, N. (2005). Association study of the g.8818A>G polymorphism of the human agouti gene with melanoma risk and pigmentary characteristics in a French population. Journal of Dermatological Science, 40(2), 133–136. https://doi.org/10.1016/j.jdermsci.2005.08.001

Motokawa, T., Kato, T., Hashimoto, Y., Hongo, M., Ito, M., Takimoto, H., & Katagiri, T. (2006). Characteristic MC1R polymorphism in the Japanese population. Journal of Dermatological Science. https://doi.org/10.1016/j.jdermsci.2005.10.006

NCBI. (n.d.). www.ncbi.nlm.nih.gov

OEGE - Online Encyclopedia for Genetic Epidemiology studies. (n.d.). http://oege.org/

Pena, S. D. J., Di Pietro, G., Fuchshuber-Moraes, M., Genro, J. P., Hutz, M. H., Kehdy, F. de S. G., & Suarez-Kurtz, G. (2011). The Genomic Ancestry of Individuals from Different Geographical Regions of Brazil Is More Uniform Than Expected. PLoS ONE, 6(2), e17063. https://doi.org/10.1371/journal.pone.0017063

Pośpiech, E., Karłowska-Pik, J., Ziemkiewicz, B., Kukla, M., Skowron, M., Wojas-Pelc, A., & Branicki, W. (2016). Further evidence for population specific differences in the effect of DNA markers and gender on eye colour prediction in forensics. International Journal of Legal Medicine, 130(4), 923–934. https://doi.org/10.1007/s00414-016-1388-2

Qiao, L., Yang, Y., Fu, P., Hu, S., Zhou, H., Peng, S., & Tang, K. (2018). Genome-wide variants of Eurasian facial shape differentiation and a prospective model of DNA based face prediction. Journal of Genetics and Genomics, 45(8), 419–432. https://doi.org/10.1016/j.jgg.2018.07.009

Queirós, F. (2019). The visibilities and invisibilities of race entangled with forensic DNA phenotyping technology. Journal of Forensic and Legal Medicine, 68(April), 101858. https://doi.org/10.1016/j.jflm.2019.08.002

Rebbeck, T. R., Kanetsky, P. A., Walker, A. H., Holmes, R., Halpern, A. C., Schuchter, L. M., & Guerry, D. (2002). P gene as an inherited biomarker of human eye color. Cancer Epidemiology, Biomarkers & Prevention : A Publication of the American Association for Cancer Research, Cosponsored by the American Society of Preventive Oncology, 11(8), 782–784. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/12163334

Salzano, F. M., & Sans, M. (2014). Interethnic admixture and the evolution of Latin American populations. Genetics and Molecular Biology, 37(1 suppl 1), 151–170. https://doi.org/10.1590/S1415-47572014000200003

Sawitzki, F. R., Rodenbusch, R., Gubert, D. W., Soares, D., Santos, B., Filipe, E., & Silva, A. (2017). SM Gr up Analysis of Eight SNPs in South Brazilian Subjects with Different Skin and Eye Melanin Content. 1(2), 1–6.

Scudder, N., McNevin, D., Kelty, S. F., Walsh, S. J., & Robertson, J. (2018). Forensic DNA phenotyping: Developing a model privacy impact assessment. Forensic Science International: Genetics, 34(June 2017), 222–230. https://doi.org/10.1016/j.fsigen.2018.03.005

Serre, C., Busuttil, V., & Botto, J.-M. (2018). Intrinsic and extrinsic regulation of human skin melanogenesis and pigmentation. International Journal of Cosmetic Science, 40(4), 328–347. https://doi.org/10.1111/ics.12466

Shi, P., Lu, X. M., Luo, H. R., Xiang-Yu, J.-G., & Zhang, Y. P. (2001). Melanocortin-1 receptor gene variants in four Chinese ethnic populations. Cell Research, 11(1), 81–84. https://doi.org/10.1038/sj.cr.7290070

Soejima, M., & Koda, Y. (2006). Population differences of two coding SNPs in pigmentation-related genes SLC24A5 and SLC45A2. International Journal of Legal Medicine, 121(1), 36–39. https://doi.org/10.1007/s00414-006-0112-z

Souza, A. M. de, Resende, S. S., Sousa, T. N. de, & Brito, C. F. A. de. (2019). A systematic scoping review of the genetic ancestry of the Brazilian population. Genetics and Molecular Biology, 42(3), 495–508. https://doi.org/10.1590/1678-4685-gmb-2018-0076

Sturm, R. A., & Duffy, D. L. (2012). Human pigmentation genes under environmental selection. Genome Biology, 13(9), 248. https://doi.org/10.1186/gb-2012-13-9-248

Sulem, P., Gudbjartsson, D. F., Stacey, S. N., Helgason, A., Rafnar, T., Jakobsdottir, M., & Stefansson, K. (2008). Two newly identified genetic determinants of pigmentation in Europeans. Nature Genetics, 40(7), 835–837. https://doi.org/10.1038/ng.160

Sulem, P., Gudbjartsson, D. F., Stacey, S. N., Helgason, A., Rafnar, T., Magnusson, K. P., & Stefansson, K. (2007). Genetic determinants of hair, eye and skin pigmentation in Europeans. Nature Genetics, 39(12), 1443–1452. https://doi.org/10.1038/ng.2007.13

Valenzuela, R. K., Henderson, M. S., Walsh, M. H., Garrison, N. A., Kelch, J. T., Cohen-Barak, O., & Brilliant, M. H. (2010). Predicting phenotype from genotype: Normal pigmentation. Journal of Forensic Sciences. https://doi.org/10.1111/j.1556-4029.2009.01317.x

Valls, J. H. (2012). Identificación y caracterización de regiones cromosómicas asociadas a melanoma esporádico en el uruguay mediante el método de mapeo por mestizaje : MC1-R como posible gen candidato. Facultad de Medicina UDELAR.

Virmond, M. B., Robert, A. W., Brito, P. B., & Massuda, T. Y. C. (2016). Fenotipagem forense pelo DNA através de SNPs. Revista Brasileira de Criminalística, 5(2), 37. https://doi.org/10.15260/rbc.v5i2.128

Voisey, J., Gomez-Cabrera, M. D. C., Smit, D. J., Leonard, J. H., Sturm, R. A., & van Daal, A. (2006). A polymorphism in the agouti signalling protein (ASIP) is associated with decreased levels of mRNA. Pigment Cell Research, 19(3), 226–231. https://doi.org/10.1111/j.1600-0749.2006.00301.x

Walsh, S., Chaitanya, L., Breslin, K., Muralidharan, C., Bronikowska, A., Pospiech, E., & Kayser, M. (2017). Global skin colour prediction from DNA. Human Genetics, 136(7), 847–863. https://doi.org/10.1007/s00439-017-1808-5

Walsh, S., Liu, F., Ballantyne, K. N., van Oven, M., Lao, O., & Kayser, M. (2011). IrisPlex: A sensitive DNA tool for accurate prediction of blue and brown eye colour in the absence of ancestry information. Forensic Science International: Genetics, 5(3), 170–180. https://doi.org/10.1016/j.fsigen.2010.02.004

Walsh, S., Liu, F., Wollstein, A., Kovatsi, L., Ralf, A., Kosiniak-Kamysz, A., & Kayser, M. (2013). The HIrisPlex system for simultaneous prediction of hair and eye colour from DNA. Forensic Science International: Genetics, 7(1), 98–115. https://doi.org/10.1016/j.fsigen.2012.07.005

Whikehart, D. R. (2003). Nucleic Acids. In Biochemistry of the Eye (Vol. 16, pp. 191–229). https://doi.org/10.1016/B978-0-7506-7152-1.50011-4

Wilde, S., Timpson, A., Kirsanow, K., Kaiser, E., Kayser, M., Unterländer, M., & Burger, J. (2014). Direct evidence for positive selection of skin, hair, and eye pigmentation in Europeans during the last 5,000 y. Proceedings of the National Academy of Sciences, 111(13), 4832–4837. https://doi.org/10.1073/pnas.1316513111

Yun, L., Gu, Y., Rajeevan, H., & Kidd, K. K. (2014). Application of six IrisPlex SNPs and comparison of two eye color prediction systems in diverse Eurasia populations. International Journal of Legal Medicine, 128(3), 447–453. https://doi.org/10.1007/s00414-013-0953-1

Zaorska, K., Zawierucha, P., & Nowicki, M. (2019). Prediction of skin color, tanning and freckling from DNA in Polish population: linear regression, random forest and neural network approaches. Human Genetics, 138(6), 635–647. https://doi.org/10.1007/s00439-019-02012-w

Zeigler-Johnson, C., Panossian, S., Gueye, S. M., Jalloh, M., Ofori-Adjei, D., & Kanetsky, P. A. (2004). Population Differences in the Frequency of the Agouti Signaling Protein g.8818A>G Polymorphism. Pigment Cell Research, 17(2), 185–187. https://doi.org/10.1111/j.1600-0749.2004.00134.x

Downloads

Publicado

11/10/2021

Como Citar

SOUZA, J. M. de .; BASTOS, M. L.; SILVA, B. de O.; LIMA, K. G. G. de; ALBUQUERQUE, G. S. de .; OLIVEIRA, R. S. de .; LIMA, L. P. O. de; DELLALIBERA, E. .; LINS , A. J. da C. C.; MUNIZ, M. T. C. . Fenotipagem por DNA Forense: um ponto de partida para o modelo de predição na população de Pernambuco, Brasil. Research, Society and Development, [S. l.], v. 10, n. 13, p. e262101320955, 2021. DOI: 10.33448/rsd-v10i13.20955. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/20955. Acesso em: 1 jul. 2024.

Edição

Seção

Ciências Agrárias e Biológicas