Influência da Dislipidemia na Secreção de esteroides ovarianos em Camundongas

Autores

DOI:

https://doi.org/10.33448/rsd-v10i13.21369

Palavras-chave:

Hipercolesterolemia; hipercolesterolemia; estrogeno; Estrógeno; progesterona; Progesterona; estresse oxidativo; Estresse oxidativo.

Resumo

Introdução: A produção de esteroides ovarianos é um processo dependente do suprimento de colesterol. Objetivo: avaliar a influência da dislipidemia na secreção dos esteroides ovarianos. Metodologia: Utilizou-se camundongas “wild type” (C57BL6) e knockout para o gene do receptor de LDL (LDLR-/-). Foram separadas em 4 grupos (n=10): WTS: receberam ração padrão; WTHL: receberam ração hiperlipídica; KOS: LDLR-/-, receberam ração padrão; KOHL: LDLR-/-, receberam ração hiperlipídica. Após 60 dias, foi analisado o ciclo estral e o sangue foi coletado para a avaliar o perfil lipídico, glicose, nível plasmático da insulina, e o índice de HOMA foi calculado. Além disso, os níveis plasmáticos de proteína C reativa, estrógeno e progesterona foram determinados. Resultados: A dieta hiperlipídica tanto no grupo WTHL quanto KOHL gerou uma hipercolesterolemia quando comparadas aos WTS e KOS, respectivamente, com diminuição de HDLc, associada ao aumento dos níveis da PCR. A hipercolesterolemia severa no grupo KOHL gerou uma resistência insulínica, marcada por aumento do HOMAir. A hipercolesterolemia alimentar no grupo WTHL, alimentar e genética no grupo KOHL, comparada com seus controles WTS e KOS, foi determinante para reduzir os níveis plasmáticos de estrógeno e progesterona. A hipercolesterolemia genética associada à resistência insulínica observada nos grupos KOS e KOHL reduziu os níveis de progesterona, sendo essa redução mais grave no grupo KOHL, que apresentou maior HOMAir. Conclusão: a dislipidemia afetou a esteroidogênese ovariana em camundongas por vias que envolvem o estresse oxidativo, inflamação e resistência insulínica e/ou pela diminuição dos níveis de HDL colesterol.

Referências

Aleisa, A. M., et al. (2013). Ameliorative effects of rutin and ascorbic acid combination on hypercholesterolemia-induced hepatotoxicity in female rats. African Journal of Pharmacy and Pharmacology. v. 7, n. 6, p. 280-288.

Alsheikh-ali, A. A., Kuvin, J. T. & Karas, R. H. (2005). High-density lipoprotein cholesterol in the cardiovascular equation: does the “good” still count?. Atherosclerosis. v. 180, n. 2, p. 217-223.

Andersen, J. M. & Dietschy, J. M. (1978). Relative importance of high and low density lipoproteins in the regulation of cholesterol synthesis in the adrenal gland, ovary, and testis of the rat. Journal of Biological Chemistry. v. 253, n. 24, p. 9024-9032.

Archuleta, T. L., et al. (2009). Oxidant stress-induced loss of IRS-1 and IRS-2 proteins in rat skeletal muscle: role of p38 MAPK. Free Radical Biology and Medicine. v. 47, n. 10, p. 1486-1493.

Argov, N. & Sklan, D. (2004). Expression of mRNA of Lipoprotein Receptor Related Protein 8, Low Density Lipoprotein Receptor, and Very Low Density Lipoprotein Receptor in Bovine Ovarian Cells During Follicular Development and Corpus Luteum Formation and Regression. Molecular Reproduction And Development. v. 68, p.169–175.

Assmann, G., Gotto Jr & Antonio M. (2004). HDL cholesterol and protective factors in atherosclerosis. Circulation. v. 109, n. 23_suppl_1, p. III-8-III-14.

Azhar, S., Leers-Sucheta, S. & Reaven, E. (2003). Cholesterol uptake in adrenal and gonadal tissues: the SR-BI and ‘selective’pathway connection. Front Biosci. v. 8, p. s998-1029.

Bhatia, B. & Price, C. A. (2001). Insulin alters the effects of follicle stimulating hormone on aromatase in bovine granulosa cells in vitro. Steroids. v. 66, n. 6, p. 511-519.

Brantmeier, S. A.; Grummer, R. R. & Ax, R. L. (1987). Concentrations of high density lipoproteins vary among follicular sizes in the bovine. Journal of dairy science. v. 70, n. 10, p. 2145-2149.

Breslow, J. L. (1993). Transgenic mouse models of lipoprotein metabolism and atherosclerosis. National Academy of Sciences. v. 90, n. 18, p. 8314-8318.

Carmeliet, P., Moons, L. & Collen, D. (1998). Mouse models of angiogenesis, arterial stenosis, atherosclerosis and hemostasis. Cardiovascular research. v. 39, n. 1, p. 8-33,

Chapman, M. J. (2004). Are the effects of statins on HDL-cholesterol clinically relevant?. European Heart Journal Supplements. v. 6, n. suppl_C, p. C58-C63.

Chaves, R. N., et al. (2011). Implicações da insulina na função ovariana e desenvolvimento embrionário. Acta Veterinaria Brasilica. v. 5, n. 2, p. 136-146.

Christison, J. et al. (1996). Rapid reduction and removal of HDL-but not LDL-associated cholesteryl ester hydroperoxides by rat liver perfused in situ. Biochemical Journal, v. 314, n. 3, p. 739-742.

Dandona, P. et al. (2013). Insulin infusion suppresses while glucose infusion induces toll like receptors and high mobility group-B1 protein expression in mononuclear cells of type 1 diabetics. American Journal of Physiology – Endocrinology and Metabolism. v. 304, p. E810 – E818.

Diamanti-kandarakis, E. & Dunaif, A. (2012). Insulin resistance and the polycystic ovary syndrome revisited: an update on mechanisms and implications. Endocrine reviews. v. 33, n. 6, p. 981-1030.

Dyer, C. A. & Curtiss, L. K. (1988). Apoprotein E-rich high density lipoproteins inhibit ovarian androgen synthesis. J Biol Chem. v. 263, n. 22, p. 10965–10973.

Egnatchik, R. A. et al. (2014). Palmitate-induced activation of mitochondrial metabolism promotes oxidative stress and apoptosis in H4IIEC3 rat hepatocytes. Metabolism. v. 63, n. 2, p. 283-295.

Fazio, S.& Linton, M. F. (2001). Mouse models of hyperlipidemia and atherosclerosis. Frontiers in bioscience: a journal and virtual library. v. 6, p. D515-25.

Friedewald, W.T., Levy, R. I. & Fredrickson, D. S. (1972). Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clinical chemistry. v. 18, n. 6, p. 499-502.

Garcia, J. A. D. et al. (2011). Efeito anti-inflamatório da lipoproteína de alta densidade no sistema cardiovascular de camundongos hiperlipidêmicos (Antiinflammatory effect of high density lipoprotein on the cardiovascular system of hyperlipidemic mice). Rev Port Cardiol. v. 30, n. 10, p. 763–769.

Garcia, J. A.D. et al. (2008). S-nitroso-n-acetylcysteine (SNAC) prevents myocardial alterations in hypercholesterolemic LDL receptor knockout mice by antiinflammatory action. Journal of cardiovascular pharmacology. v. 51, n. 1, p. 78-85, 2008.

Guo, T. et al. (2015). Low-density lipoprotein receptor affects the fertility of female mice. Reproduction, Fertility and Development. v. 27, n. 8, p. 1222-1232.

Hedrick, C. C. et al. (2001). In vivo interactions of apoA-II, apoA-I, and hepatic lipase contributing to HDL structure and antiatherogenic functions. Journal of lipid research. v. 42, n. 4, p. 563-570.

Henderson, K. M., Gorban, A. M. S & Boyd, G. S. (1981). Effect of LH factors regulating ovarian cholesterol metabolism and progesterone synthesis in PMSG-primed immature rats. Reproduction. v. 61, n. 2, p. 373-380.

Henriksen, E.J., Diamond-Stanic, Maggie K. & Marchionne, E. M. (2011). Oxidative stress and the etiology of insulin resistance and type 2 diabetes. Free Radical Biology and Medicine. v. 51, n. 5, p. 993-999.

Hwang, J. & Menon, K. M. (1983). Characterization of low density and high density lipoprotein receptors in the rat corpus luteum and regulation by gonadotropin. Journal of Biological Chemistry. v. 258, n. 13, p. 8020-8027.

Ishibashi, S. et al. (1993). Hypercholesterolemia in Low Density Lipoprotein Receptor Knockout Mice and its Reversal by Adenovirus-mediated Gene Delivery. The Journal of Clinical Investigation. v.92, p. 883-893.

Ishibashi, S. et al. (1994). The two-receptor model of lipoprotein clearance: tests of the hypothesis in" knockout" mice lacking the low density lipoprotein receptor, apolipoprotein E, or both proteins. Proceedings of the National Academy of Sciences. v. 91, n. 10, p. 4431-4435.

Lima, J. C. C. et al. (2000). Usando proteína C reativa de alta sensibilidade (PCR-AS) como preditor de doença cardiovascular. Newslab. v. 41, p. 164-166,

Louhio, H. et al. (2000). The effects of insulin, and insulin-like growth factors I and II on human ovarian follicles in long-term culture. Molecular human reproduction. v. 6, n. 8, p. 694-698.

Martins, A. M. et al. (2020). Grape juice attenuates left ventricular hypertrophy in dyslipidemic mice. Plos one. v. 15, n. 9, p. e0238163.

Miettinen, H. E. Rayburn, H. & Krieger M. (2001). Abnormal lipoprotein metabolism and reversible female infertility in HDL receptor (SR-BI)-deficient mice. J Clin Invest. 108(11):1717-22.

Miller, W. L.; Auchus, R. J. (2011). The molecular biology, biochemistry, and physiology of human steroidogenesis and its disorders. Endocr. Ver. v. 32, p. 81–151.

Myers, M. G. et al. (1991). The insulin receptor functions normally in Chinese hamster ovary cells after truncation of the C terminus. Journal of Biological Chemistry. v. 266, n. 16, p. 10616-10623.

Nofer, J. R. et al. (2002). HDL and arteriosclerosis: beyond reverse cholesterol transport. Atherosclerosis. v. 161, n. 1, p. 1-16.

Paavola, L.G. et al. (1985). Uptake of gold- and [3H]cholesteryl linoleate-labeled human low density lipoprotein by cultured rat granulosa cells: cellular mechanisms involved in lipoprotein metabolism and their importance to steroidogenesis. J Cell Biol. apr;100(4):1235-47.

Premoli, A.C. G. et al. (2000). Perfil lipídico em pacientes portadoras da síndrome dos ovários policísticos. Revista brasileira de ginecologia e obstetricia. v. 22, n. 2, p. 89-94.

Santos, I. S. et al. (2017). Insulin resistance is associated with carotid intima-media thickness in non-diabetic subjects. A cross-sectional analysis of the ELSA-Brasil cohort baseline. Atherosclerosis. v. 260, p. 34-40.

Sarto, D. A. Q. S. et al. (2018). Dry Extract of Passiflora incarnata L. leaves as a Cardiac and Hepatic Oxidative Stress Protector in LDLr-/- Mice Fed High-Fat Diet. v.61.

Shoelson, S.E., Herrero, L. & Naaz, A. (2007). Obesity, inflammation, and insulin resistance. Gastroenterology. v. 132, n. 6, p. 2169-2180.

Simpson, E. R. et al. (1980). Plasma lipoproteins in follicular fluid of human ovaries. The Journal of Clinical Endocrinology & Metabolism. v. 51, n. 6, p. 1469-1471.

Sirotkin, A. V. et al. (1998). Effect of follicular cells, IGF-I and tyrosine kinase blockers on oocyte maturation. Animal reproduction science. v. 51, n. 4, p. 333-344.

Souza, C. T. (2018). Envolvimento da inflamação subclínica e do estresse oxidativo na resistência à insulina associada a obesidade. HU rev. p. 211-220, 2018.

Tian, J. et al. (2006). Hyperlipidemia is a major determinant of neointimal formation in LDL receptor-deficient mice. Biochemical and biophysical research communications. v. 345, n. 3, p. 1004-1009.

Tomofuji, T. et al. (2006). Oxidative damage of periodontal tissue in the rat periodontitis model: effects of a high-cholesterol diet. FEBS letters. v. 580, n. 15, p. 3601-3604.

Van Den Hurk, R. & Zhao, J. (2005). Formation of mammalian oocytes and their growth, differentiation and maturation within ovarian follicles. Theriogenology. v. 63, n. 6, p. 1717-1751.

Von- Eckardstein, A. & Assmann, G. (2000). Prevention of coronary heart disease by raising high-density lipoprotein cholesterol?. Current opinion in lipidology. v. 11, n. 6, p. 627-63.

Wensveen, F. M. et al. (2015). Interactions between adipose tissue and the immune system in health and malnutrition. In: Seminars in immunology. Academic Press, p. 322-333.

Yamasaki, M. et al. (2018). Vaccinium ashei leaves extract alleviates insulin resistance via AMPK independent pathway in C2C12 myotube model. Biochemistry and biophysics reports. v. 14, p. 182-187, 2018.

Yokode, M. et al. (1990). Diet-induced hypercholesterolemia in mice: prevention by overexpression of LDL receptors. Science. v. 250, n. 4985, p. 1273-1275.

Aleisa, A. M., et al. (2013). Ameliorative effects of rutin and ascorbic acid combination on hypercholesterolemia-induced hepatotoxicity in female rats. African Journal of Pharmacy and Pharmacology. v. 7, n. 6, p. 280-288.

Alsheikh-ali, A. A., Kuvin, J. T. & Karas, R. H. (2005). High-density lipoprotein cholesterol in the cardiovascular equation: does the “good” still count?. Atherosclerosis. v. 180, n. 2, p. 217-223.

Andersen, J. M. & Dietschy, J. M. (1978). Relative importance of high and low density lipoproteins in the regulation of cholesterol synthesis in the adrenal gland, ovary, and testis of the rat. Journal of Biological Chemistry. v. 253, n. 24, p. 9024-9032.

Archuleta, T. L., et al. (2009). Oxidant stress-induced loss of IRS-1 and IRS-2 proteins in rat skeletal muscle: role of p38 MAPK. Free Radical Biology and Medicine. v. 47, n. 10, p. 1486-1493.

Argov, N. & Sklan, D. (2004). Expression of mRNA of Lipoprotein Receptor Related Protein 8, Low Density Lipoprotein Receptor, and Very Low Density Lipoprotein Receptor in Bovine Ovarian Cells During Follicular Development and Corpus Luteum Formation and Regression. Molecular Reproduction And Development. v. 68, p.169–175.

Assmann, G., Gotto Jr & Antonio M. (2004). HDL cholesterol and protective factors in atherosclerosis. Circulation. v. 109, n. 23_suppl_1, p. III-8-III-14.

Azhar, S., Leers-Sucheta, S. & Reaven, E. (2003). Cholesterol uptake in adrenal and gonadal tissues: the SR-BI and ‘selective’pathway connection. Front Biosci. v. 8, p. s998-1029.

Bhatia, B. & Price, C. A. (2001). Insulin alters the effects of follicle stimulating hormone on aromatase in bovine granulosa cells in vitro. Steroids. v. 66, n. 6, p. 511-519.

Brantmeier, S. A.; Grummer, R. R. & Ax, R. L. (1987). Concentrations of high density lipoproteins vary among follicular sizes in the bovine. Journal of dairy science. v. 70, n. 10, p. 2145-2149.

Breslow, J. L. (1993). Transgenic mouse models of lipoprotein metabolism and atherosclerosis. National Academy of Sciences. v. 90, n. 18, p. 8314-8318.

Carmeliet, P., Moons, L. & Collen, D. (1998). Mouse models of angiogenesis, arterial stenosis, atherosclerosis and hemostasis. Cardiovascular research. v. 39, n. 1, p. 8-33,

Chapman, M. J. (2004). Are the effects of statins on HDL-cholesterol clinically relevant?. European Heart Journal Supplements. v. 6, n. suppl_C, p. C58-C63.

Chaves, R. N., et al. (2011). Implicações da insulina na função ovariana e desenvolvimento embrionário. Acta Veterinaria Brasilica. v. 5, n. 2, p. 136-146.

Christison, J. et al. (1996). Rapid reduction and removal of HDL-but not LDL-associated cholesteryl ester hydroperoxides by rat liver perfused in situ. Biochemical Journal, v. 314, n. 3, p. 739-742.

Dandona, P. et al. (2013). Insulin infusion suppresses while glucose infusion induces toll like receptors and high mobility group-B1 protein expression in mononuclear cells of type 1 diabetics. American Journal of Physiology – Endocrinology and Metabolism. v. 304, p. E810 – E818.

Diamanti-kandarakis, E. & Dunaif, A. (2012). Insulin resistance and the polycystic ovary syndrome revisited: an update on mechanisms and implications. Endocrine reviews. v. 33, n. 6, p. 981-1030.

Dyer, C. A. & Curtiss, L. K. (1988). Apoprotein E-rich high density lipoproteins inhibit ovarian androgen synthesis. J Biol Chem. v. 263, n. 22, p. 10965–10973.

Egnatchik, R. A. et al. (2014). Palmitate-induced activation of mitochondrial metabolism promotes oxidative stress and apoptosis in H4IIEC3 rat hepatocytes. Metabolism. v. 63, n. 2, p. 283-295.

Fazio, S.& Linton, M. F. (2001). Mouse models of hyperlipidemia and atherosclerosis. Frontiers in bioscience: a journal and virtual library. v. 6, p. D515-25.

Friedewald, W.T., Levy, R. I. & Fredrickson, D. S. (1972). Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clinical chemistry. v. 18, n. 6, p. 499-502.

Garcia, J. A. D. et al. (2011). Efeito anti-inflamatório da lipoproteína de alta densidade no sistema cardiovascular de camundongos hiperlipidêmicos (Antiinflammatory effect of high density lipoprotein on the cardiovascular system of hyperlipidemic mice). Rev Port Cardiol. v. 30, n. 10, p. 763–769.

Garcia, J. A.D. et al. (2008). S-nitroso-n-acetylcysteine (SNAC) prevents myocardial alterations in hypercholesterolemic LDL receptor knockout mice by antiinflammatory action. Journal of cardiovascular pharmacology. v. 51, n. 1, p. 78-85, 2008.

Guo, T. et al. (2015). Low-density lipoprotein receptor affects the fertility of female mice. Reproduction, Fertility and Development. v. 27, n. 8, p. 1222-1232.

Hedrick, C. C. et al. (2001). In vivo interactions of apoA-II, apoA-I, and hepatic lipase contributing to HDL structure and antiatherogenic functions. Journal of lipid research. v. 42, n. 4, p. 563-570.

Henderson, K. M., Gorban, A. M. S & Boyd, G. S. (1981). Effect of LH factors regulating ovarian cholesterol metabolism and progesterone synthesis in PMSG-primed immature rats. Reproduction. v. 61, n. 2, p. 373-380.

Henriksen, E.J., Diamond-Stanic, Maggie K. & Marchionne, E. M. (2011). Oxidative stress and the etiology of insulin resistance and type 2 diabetes. Free Radical Biology and Medicine. v. 51, n. 5, p. 993-999.

Hwang, J. & Menon, K. M. (1983). Characterization of low density and high density lipoprotein receptors in the rat corpus luteum and regulation by gonadotropin. Journal of Biological Chemistry. v. 258, n. 13, p. 8020-8027.

Ishibashi, S. et al. (1993). Hypercholesterolemia in Low Density Lipoprotein Receptor Knockout Mice and its Reversal by Adenovirus-mediated Gene Delivery. The Journal of Clinical Investigation. v.92, p. 883-893.

Ishibashi, S. et al. (1994). The two-receptor model of lipoprotein clearance: tests of the hypothesis in" knockout" mice lacking the low density lipoprotein receptor, apolipoprotein E, or both proteins. Proceedings of the National Academy of Sciences. v. 91, n. 10, p. 4431-4435.

Lima, J. C. C. et al. (2000). Usando proteína C reativa de alta sensibilidade (PCR-AS) como preditor de doença cardiovascular. Newslab. v. 41, p. 164-166,

Louhio, H. et al. (2000). The effects of insulin, and insulin-like growth factors I and II on human ovarian follicles in long-term culture. Molecular human reproduction. v. 6, n. 8, p. 694-698.

Martins, A. M. et al. (2020). Grape juice attenuates left ventricular hypertrophy in dyslipidemic mice. Plos one. v. 15, n. 9, p. e0238163.

Miettinen, H. E. Rayburn, H. & Krieger M. (2001). Abnormal lipoprotein metabolism and reversible female infertility in HDL receptor (SR-BI)-deficient mice. J Clin Invest. 108(11):1717-22.

Miller, W. L.; Auchus, R. J. (2011). The molecular biology, biochemistry, and physiology of human steroidogenesis and its disorders. Endocr. Ver. v. 32, p. 81–151.

Myers, M. G. et al. (1991). The insulin receptor functions normally in Chinese hamster ovary cells after truncation of the C terminus. Journal of Biological Chemistry. v. 266, n. 16, p. 10616-10623.

Nofer, J. R. et al. (2002). HDL and arteriosclerosis: beyond reverse cholesterol transport. Atherosclerosis. v. 161, n. 1, p. 1-16.

Paavola, L.G. et al. (1985). Uptake of gold- and [3H]cholesteryl linoleate-labeled human low density lipoprotein by cultured rat granulosa cells: cellular mechanisms involved in lipoprotein metabolism and their importance to steroidogenesis. J Cell Biol. apr;100(4):1235-47.

Premoli, A.C. G. et al. (2000). Perfil lipídico em pacientes portadoras da síndrome dos ovários policísticos. Revista brasileira de ginecologia e obstetricia. v. 22, n. 2, p. 89-94.

Santos, I. S. et al. (2017). Insulin resistance is associated with carotid intima-media thickness in non-diabetic subjects. A cross-sectional analysis of the ELSA-Brasil cohort baseline. Atherosclerosis. v. 260, p. 34-40.

Sarto, D. A. Q. S. et al. (2018). Dry Extract of Passiflora incarnata L. leaves as a Cardiac and Hepatic Oxidative Stress Protector in LDLr-/- Mice Fed High-Fat Diet. v.61.

Shoelson, S.E., Herrero, L. & Naaz, A. (2007). Obesity, inflammation, and insulin resistance. Gastroenterology. v. 132, n. 6, p. 2169-2180.

Simpson, E. R. et al. (1980). Plasma lipoproteins in follicular fluid of human ovaries. The Journal of Clinical Endocrinology & Metabolism. v. 51, n. 6, p. 1469-1471.

Sirotkin, A. V. et al. (1998). Effect of follicular cells, IGF-I and tyrosine kinase blockers on oocyte maturation. Animal reproduction science. v. 51, n. 4, p. 333-344.

Souza, C. T. (2018). Envolvimento da inflamação subclínica e do estresse oxidativo na resistência à insulina associada a obesidade. HU rev. p. 211-220, 2018.

Tian, J. et al. (2006). Hyperlipidemia is a major determinant of neointimal formation in LDL receptor-deficient mice. Biochemical and biophysical research communications. v. 345, n. 3, p. 1004-1009.

Tomofuji, T. et al. (2006). Oxidative damage of periodontal tissue in the rat periodontitis model: effects of a high-cholesterol diet. FEBS letters. v. 580, n. 15, p. 3601-3604.

Van Den Hurk, R. & Zhao, J. (2005). Formation of mammalian oocytes and their growth, differentiation and maturation within ovarian follicles. Theriogenology. v. 63, n. 6, p. 1717-1751.

Von- Eckardstein, A. & Assmann, G. (2000). Prevention of coronary heart disease by raising high-density lipoprotein cholesterol?. Current opinion in lipidology. v. 11, n. 6, p. 627-63.

Wensveen, F. M. et al. (2015). Interactions between adipose tissue and the immune system in health and malnutrition. In: Seminars in immunology. Academic Press, p. 322-333.

Yamasaki, M. et al. (2018). Vaccinium ashei leaves extract alleviates insulin resistance via AMPK independent pathway in C2C12 myotube model. Biochemistry and biophysics reports. v. 14, p. 182-187, 2018.

Yokode, M. et al. (1990). Diet-induced hypercholesterolemia in mice: prevention by overexpression of LDL receptors. Science. v. 250, n. 4985, p. 1273-1275.

Downloads

Publicado

12/10/2021

Como Citar

ABREU, J. M. .; SANTOS, G. B. .; CARVALHO, M. das G. de S.; MENCARELLI, J. M. .; CÂNDIDO, B. R. M. .; PRADO, B. B. de P. .; CAIXETA, E. S.; PEREIRA NETO , S. O. .; CORSETTI, . P. P. .; OLIVEIRA, N. de M. S. .; GARCIA, E. K. I. .; SILVÉRIO, A. C. P. .; ANJOS, J. A. dos .; ALVES , L. R. de C. .; GARCIA , J. A. D. . Influência da Dislipidemia na Secreção de esteroides ovarianos em Camundongas. Research, Society and Development, [S. l.], v. 10, n. 13, p. e298101321369, 2021. DOI: 10.33448/rsd-v10i13.21369. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/21369. Acesso em: 17 jul. 2024.

Edição

Seção

Ciências da Saúde