Estimativa das propriedades hidráulicas e de transporte de soluto do solo a partir de experimentos de infiltração de campo
DOI:
https://doi.org/10.33448/rsd-v10i14.21764Palavras-chave:
Solo insaturado; Caracterização hidrodispersiva; Infiltração de soluto.Resumo
Para modelar o fluxo de água e o transporte de solutos no solo, parâmetros hidrodinâmicos e hidrodispersivos são necessários como dados de entrada nos modelos matemáticos. Este trabalho tem como objetivo estimar as propriedades hidráulicas e de transporte de soluto do solo por meio de um experimento de infiltração axissimétrica utilizando um único anel como infiltrômetro juntamente com um traçador conservador (Cl-) em campo. Experimentos de infiltração em anel simples foram realizados em um Latossolo em Areia, Paraíba, Brasil (6°58'S, 35°41'W e 645 m), em uma malha de 50x50 m (16 pontos). A condutividade hidráulica insaturada (K), e a sorvidade (S), foram estimadas pelas análises dos tempos longo e curto da infiltração tridimensional cumulativa. A técnica de traçador único foi usada para calcular a fração de água móvel, Ф, medindo a concentração de soluto abaixo do infiltrômetro no final da infiltração. Dois modelos numéricos de transferência de soluto baseados no conceito de água móvel-imóvel foram usados. A fração de água móvel (Ф), o coeficiente de dispersão (D) e o coeficiente de transferência de massa (a) entre a água móvel-imóvel foram estimados a partir da profundidade de infiltração medida e do perfil de concentração de Cl- abaixo do infiltrômetro de anel. Os modelos de convecção-dispersão (CD) e móvel-imóvel (MIM) alcançaram uma boa concordância entre os valores calculados e medidos. No entanto, os menores erros padrão para os parâmetros ajustados foram obtidos para o modelo CD.
Referências
Al-Jabri, S. A., Lee, J., Gaur, A., Horton, R., & Jaynes, D. B. (2006). A dripper-TDR method for in situ determination of hydraulic conductivity and chemical transport properties of surface soils. Advances in Water Resources, 29(2), 239–249. https://doi.org/10.1016/j.advwatres.2004.12.016
Allaire, S. E., Gupta, S. C., Nieber, J., & Moncrief, J. F. (2002a). Role of macropore continuity and tortuosity on solute transport in soils: 1. Effects of initial and boundary conditions. Journal of Contaminant Hydrology, 58(3–4), 299-321. https://doi.org/10.1016/S0169-7722(02)00035-9
Allaire, S. E., Gupta, S. C., Nieber, J., & Moncrief, J. F. (2002b). Role of macropore continuity and tortuosity on solute transport in soils: 2. Interactions with model assumptions for macropore description. Journal of Contaminant Hydrology,Vol. 58(3-4), 283-298, https://doi.org/10.1016/S0169-7722(02)00034-7.
Angulo-Jaramillo, R., Bagarello, V., Di Prima, S., Gosset, A., Iovino, M., & Lassabatere, L. (2019). Beerkan Estimation of Soil Transfer parameters (BEST) across soils and scales. Journal of Hydrology, 576, 239–261. https://doi.org/10.1016/j.jhydrol.2019.06.007
Angulo-Jaramillo, R., Thony, J. L., Vachaud, G., Moreno, F., Fernandez-Boy, E., Cayuela, J. A., & Clothier, B. E. (1997). Seasonal Variation of Hydraulic Properties of Soils Measured using a Tension Disk Infiltrometer. Soil Science Society of America Journal, 61(1), 27–32. https://doi.org/10.2136/sssaj1997.03615995006100010005x
Angulo-Jaramillo, Rafael, Gaudet, J.-P., Thony, J.-L., & Vauclin, M. (1996). Measurement of Hydraulic Properties and Mobile Water Content of a Field Soil. Soil Science Society of America Journal, 60(3), 710–715. https://doi.org/10.2136/sssaj1996.03615995006000030004x
Arora, B., Dwivedi, D., Faybishenko, B., Jana, R. B., & Wainwright, H. M. (2019). Understanding and Predicting Vadose Zone Processes. Reviews in Mineralogy and Geochemistry, 85(1), 303–328. https://doi.org/10.2138/rmg.2019.85.10
Bejat, L., Perfect, E., Quisenberry, V. L., Coyne, M. S., & Haszler, G. R. (2000). Solute Transport as Related to Soil Structure in Unsaturated Intact Soil Blocks. Soil Science Society of America Journal, 64(June), 818–826.
Brooks, R. H., & Corey, A. T. (1964). Hydraulic properties of porous media. In Hydrology and Water Resources Program. Colorado State University, Fort Collins (USA).
Burdine, N. T. (1953). Relative Permeability Calculations From Pore Size Distribution Data. Journal of Petroleum Technology, 5(03), 71–78. https://doi.org/10.2118/225-G
Clothier, B. E., Kirkham, M. B., & McLean, J. E. (1992). In Situ Measurement of the Effective Transport Volume for Solute Moving Through Soil. Soil Science Society of America Journal, 56(3), 733–736. https://doi.org/10.2136/sssaj1992.03615995005600030010x
Clothier, B., Heng, L., Magesan, G., & Vogeler, I. (1995). The measured mobile-water content of an unsaturated soil as a function of hydraulic regime. Soil Research, 33(3), 397. https://doi.org/10.1071/SR9950397
Comegna, V., Coppola, A., & Sommella, A. (2001). Effectiveness of equilibrium and physical nonequilibrium approaches for interpreting solute transport through undisturbed soil columns. Journal of Contaminant Hydrology, 50(1–2), 121–138. https://doi.org/10.1016/S0169-7722(01)00100-0
Ersahin, S., Papendick, R. I., Smith, J. L., Keller, C. K., & Manoranjan, V. S. (2002). Macropore transport of bromide as influenced by soil structure differences. Geoderma, 108(3–4), 207–223. https://doi.org/10.1016/S0016-7061(02)00131-3
Fuentes, C., Vauclin, M., Parlange, J. Y., & Haverkamp, R. (1998). Soil-water conductivity of a fractal soil. In B. A. S. P. Baveye, J.Y. Parlange (Ed.), Fractals in soil science (pp. 333–340). Boca Raton (USA): CRC Press.
Gerke, H. H., & Maximilian Köhne, J. (2004). Dual-permeability modeling of preferential bromide leaching from a tile-drained glacial till agricultural field. Journal of Hydrology, 289(1–4), 239–257. https://doi.org/10.1016/j.jhydrol.2003.11.019
Gvirtzman, H., & Magaritz, M. (1986). Investigation of Water Movement in the Unsaturated Zone Under an Irrigated Area Using Environmental Tritium. Water Resources Research, 22(5), 635–642. https://doi.org/10.1029/WR022i005p00635
Haverkamp, R., Ross, P. J., Smettem, K. R. J., & Parlange, J. Y. (1994). Three-dimensional analysis of infiltration from the disc infiltrometer: 2. Physically based infiltration equation. Water Resources Research, 30(11), 2931–2935. https://doi.org/10.1029/94WR01788
Haverkamp, Randel, Debionne, S., Angulo-Jaramillo, R., & De Condappa, D. (2017). Soil properties and moisture movement in the unsaturated zone. In J. H. Cushman & D. Tartakovsky (Eds.), The Handbook of Groundwater Engineering, Third Edition (Third, pp. 149–190). Boca Raton (USA): CRC Press.
Haverkamp, Randel, & Parlange, J. Y. (1986). Predicting the water-retention curve from particle-size distribution. 1. Sandy soils without organic matter. AGRIS, 142(6), 325–339.
Jaynes, D. B., Logsdon, S. D., & Horton, R. (1995). Field Method for Measuring Mobile/Immobile Water Content and Solute Transfer Rate Coefficient. Soil Science Society of America Journal, 59(2), 352–356. https://doi.org/10.2136/sssaj1995.03615995005900020012x
Kamra, S. K., & Lennartz, B. (2005). Quantitative indices to characterize the extent of preferential flow in soils. Environmental Modelling & Software, 20(7), 903–915. https://doi.org/10.1016/j.envsoft.2004.05.004
Köhne, J. M., Schlüter, S., & Vogel, H.-J. (2011). Predicting Solute Transport in Structured Soil Using Pore Network Models. Vadose Zone Journal, 10(3), 1082. https://doi.org/10.2136/vzj2010.0158
Lassabatère, L., Angulo-Jaramillo, R., Soria Ugalde, J. M., Cuenca, R., Braud, I., & Haverkamp, R. (2006). Beerkan Estimation of Soil Transfer Parameters through Infiltration Experiments-BEST. Soil Science Society of America Journal, 70(2), 521–532. https://doi.org/10.2136/sssaj2005.0026
Lassabatere, L., Di Prima, S., Angulo-Jaramillo, R., Keesstra, S., & Salesa, D. (2019). Beerkan multi-runs for characterizing water infiltration and spatial variability of soil hydraulic properties across scales. Hydrological Sciences Journal, 64(2), 165–178. https://doi.org/10.1080/02626667.2018.1560448
Legout, A., Legout, C., Nys, C., & Dambrine, E. (2009). Preferential flow and slow convective chloride transport through the soil of a forested landscape (Fougères, France). Geoderma, 151(3–4), 179–190. https://doi.org/10.1016/j.geoderma.2009.04.002
Li, M., Yao, J., Yan, R., & Cheng, J. (2021). Effects of Infiltration Amounts on Preferential Flow Characteristics and Solute Transport in the Protection Forest Soil of Southwestern China. Water, 13(9), 1301. https://doi.org/10.3390/w13091301
Mubarak, I., Angulo-Jaramillo, R., Mailhol, J. C., Ruelle, P., Khaledian, M., & Vauclin, M. (2010). Spatial analysis of soil surface hydraulic properties: Is infiltration method dependent? Agricultural Water Management, 97(10), 1517–1526. https://doi.org/10.1016/j.agwat.2010.05.005
Netto, A.M., Lima, L. J. S., Antonino, A. C. D., de Souza, E. S., & Angulo-Jaramillo, R. (2013). Hydrodynamic and hydrodispersive parameters of an oxisol in the wetland region of Paraíba. Revista Brasileira de Ciencia Do Solo, 37(1). https://doi.org/10.1590/S0100-06832013000100009
Rao, P. S. C., Rolston, D. E., Jessup, R. E., & Davidson, J. M. (1980). Solute Transport in Aggregated Porous Media: Theoretical and Experimental Evaluation. Soil Science Society of America Journal, 44(6), 1139–1146. https://doi.org/10.2136/sssaj1980.03615995004400060003x
Renard, J. Le, Calvet, R., Tournier, C., Hubert, A., Renard, J. Le, Calvet, R., … Mesure, A. H. (1977). Mesure du coefficient de dispersion hydrodynamique longitudinal dans un milieu poreux saturé. Annales Agronomiques, 28(1), 47–64.
Rice, R. C., Bowman, R. S., & Jaynes, D. B. (1986). Percolation of Water Below an Irrigated Field. Soil Science Society of America Journal, 50(4), 855–859. https://doi.org/10.2136/sssaj1986.03615995005000040005x
Roulier, S. (1999). Caractérisation hydro-dispersive in situ de sols non saturés par infiltration d’eau et de soluté : cas de sols structurés et de sols hétérogènes. Joseph Fourier, Grenoble I.
Roulier, S., Angulo-Jaramillo, R., Bresson, L.-M., Auzet, A.-V., Gaudet, J.-P., & Bariac, T. (2002). WATER TRANSFER AND MOBILE WATER CONTENT MEASUREMENT IN A CULTIVATED CRUSTED SOIL. Soil Science, 167(3), 201–210. https://doi.org/10.1097/00010694-200203000-00005
Selim, T., Persson, M., & Olsson, J. (2017). Impact of spatial rainfall resolution on point-source solute transport modelling. Hydrological Sciences Journal, 62(16), 2587–2596. https://doi.org/10.1080/02626667.2017.1403029
Seyfried, M. S., & Rao, P. S. C. (1987). Solute Transport in Undisturbed Columns of an Aggregated Tropical Soil: Preferential Flow Effects. Soil Science Society of America Journal, 51(6), 1434–1444. https://doi.org/10.2136/sssaj1987.03615995005100060008x
Smettem, K. R. J., Parlange, J. Y., Ross, P. J., & Haverkamp, R. (1994). Three-dimensional analysis of infiltration from the disc infiltrometer: 1. A capillary-based theory. Water Resources Research, 30(11), 2925–2929. https://doi.org/10.1029/94WR01787
Snow, V. O. (1999). In Situ Measurement of Solute Transport Coefficients: Assumptions and Errors. Soil Science Society of America Journal, 63(2), 255–263. https://doi.org/10.2136/sssaj1999.03615995006300020001x
Soria Ugalde, J. M. (2003). Identification des paramètres hydrodynamiques du sol par modélisation inverse des flux d’infiltration : application aux échelles locales et hydrologique. 168.
Souza, E. S. de, Antonino, A. C. D., Angulo-Jaramillo, R., & Netto, A. M. (2008). Caracterização hidrodinâmica de solos: aplicação do método Beerkan. Revista Brasileira de Engenharia Agrícola e Ambiental, 12(2), 128–135. https://doi.org/10.1590/S1415-43662008000200004
Tabarzad, A., Sepaskhah, A. R., & Farnoud, T. (2011). Determination of chemical transport properties for different textures of undisturbed soils. Archives of Agronomy and Soil Science, 57(8), 915–930. https://doi.org/10.1080/03650340.2010.499900
Toride, N., Leij, F. J., & van Genuchten, M. T. (1995). The CXTFIT Code for Estimating Transport Parameters from Laboratory or Field Tracer Experiement. In U. S. Salinity Laboratory. Retrieved from http://afrsweb.usda.gov/SP2UserFiles/Place/53102000/pdf_pubs/P1444.pdf
van der Linden, J. H., Tordesillas, A., & Narsilio, G. A. (2019). Preferential flow pathways in a deforming granular material: self-organization into functional groups for optimized global transport. Scientific Reports, 9(1), 18231. https://doi.org/10.1038/s41598-019-54699-6
van Genuchten, M. T. (1980). A Closed-form Equation for Predicting the Hydraulic Conductivity of Unsaturated Soils. Soil Science Society of America Journal, 44(5), 892–898. https://doi.org/10.2136/sssaj1980.03615995004400050002x
Wallis, S., & Manson, R. (2019). Sensitivity of optimized transient storage model parameters to spatial and temporal resolution. Acta Geophysica, 67(3), 951–960. https://doi.org/10.1007/s11600-019-00253-x
Yilmaz, D., Lassabatere, L., Angulo-Jaramillo, R., Deneele, D., & Legret, M. (2010). Hydrodynamic Characterization of Basic Oxygen Furnace Slag through an Adapted BEST Method. Vadose Zone Journal, 9(1), 107. https://doi.org/10.2136/vzj2009.0039
Zhang, Y., Cao, Z., Hou, F., & Cheng, J. (2021). Characterizing Preferential Flow Paths in Texturally Similar Soils under Different Land Uses by Combining Drainage and Dye-Staining Methods. Water, 13(2), 219. https://doi.org/10.3390/w13020219
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2021 André Maciel Netto; Suzana Maria Gico Lima Montenegro; Ademir de Jesus Amaral

Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Autores que publicam nesta revista concordam com os seguintes termos:
1) Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
2) Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
3) Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado.