Sistemas imunológicos artificiais aplicados ao diagnóstico clínico de amostras de câncer de mama

Autores

DOI:

https://doi.org/10.33448/rsd-v11i5.21941

Palavras-chave:

Diagnóstico de câncer de mama; Sistemas imunológicos artificiais; Algoritmo de seleção negativa.

Resumo

Este trabalho emprega estruturas resistentes fabricadas conectadas para diagnosticar testes de câncer de mama. Tomando como premissa um preparo imunológico, o Algoritmo de Seleção Negativa foi utilizado para segregar os testes, conseguindo uma classificação para casos generosos ou prejudiciais. A maior aplicação da estratégia é ajudar os especialistas da demonstração do câncer de mama a se prepararem, dando assim agilidade na tomada de decisões, tratamento eficiente, qualidade inabalável e a mediação vital para salvar vidas. Para avaliar esta estratégia, foi utilizado o banco de dados Wisconsin Breast Cancer Database. Isso geralmente é um banco de dados real de câncer de mama. Os resultados obtidos utilizando a estratégia, quando comparados com a escrita especializada, aparecem com precisão, força e proficiência no manejo demonstrativo do câncer de mama.

Referências

Bennett, K. P., & Mangasarian, O. L. (1992). Robust Linear Programming Discrimination of Two Linearly Inseparable Sets, Optimization Methods and Software, Gordon & Breach Science Publishers, 23-34.

Bradley, D. W., & Tyrrell, A.M. (2002). Immunotronics - Novel Finite-State-Machine Architectures with Built-In Self-Test Using Self-Nonself Differentiation. IEEE Trans. on Evolutionary Computation. 6 (3), 227-238.

Camastra, F. (2006). Kernel Methods for Clustering. Lecture Notes in Computer Science. 3931, 1–9.

Castro, L. N. (2001). Immune engineering: development and application of computational tools inspired by artificial immune systems. PhD. Thesis. UNICAMP. Campinas, São Paulo, Brazil. (In Portuguese).

Castro, L. N. & Timmis, J. (2002). Artificial Immune Systems: A New Computational Intelligence Approach, Springer.

Dasgupta, D. (1998). Artificial Immune Systems and Their Applications, Springer, New York, USA.

Dasgupta, D. (2006). Advances in Artificial Immune Systems. IEEE Computational Intelligence Magazine, 40-49.

Forrest, S., Hofmeyr, S. A., & Somayaji, A. (1997). Computer Immunology. Communications of the AC. 88-96.

Forrest, S., Perelson, A., Allen, L., & Cherukuri, R. (1994). Self-Nonself Discrimination in a Computer, Proc. of IEEE Symposium on Research in Security and Privacy. 202-212.

Hamdi, R. El., Njah, M., & Chtourou, M. (2010). An Evolutionary Neuro-Fuzzy Approach to Breast Cancer Diagnosis. IEEE International Conference on Systems, Man and Cybernetics, 142-146.

INCA – National Institute of Cancer (Brazil). Available at: http://www.inca.gov.br.

Jung, J-S. R. (1993) ANFIS: Adaptive Network-Based Fuzzy Inference System. IEEE Trans. on Systems, Man, and Cybernetics. 23 (3), 665-685.

Karabatak, M., Ince, M. C., & Avci, E. (2008). An Expert System for Diagnosis Breast Cancer Based on Principal Component Analyses Method. IEEE Proceedings on Communication and Applications Conference, 1-4.

Lima, F. P. A., Lotufo, A. D. P., & Minussi, C. R. (2013). Artificial Immune Systems Applied to Voltage Disturbance Diagnosis in Distribution Electrical Systems, PowerTech-2013, Grenoble, France, 1-6.

Mangasarian O. L., Setiono, R., & Wolberg, W. H. (1990). Pattern Recognition Via Linear Programming: Theory and Application to Medical Diagnosis. Large-scale Numerical Optimization, 22-30.

Manikantan, K., Sayed, S.I., Syrigos, K.N., Rhys-Evans, P., Nutting, C.M., Harrington, K.J., & Kazi, R. Challenges for The Future Modifications of The TNM Staging System for Head and Neck Cancer: Case for a New Computational Model. Cancer Treatment Reviews, 35 (7), 639-644.

MATLAB 7.8 version, Mathworks Company.

Meesad, P. & Yen, G. G. (2003). Combined Numerical and Linguistic Knowledge Representation and Its Application to Medical Diagnosis. IEEE Trans. on Systems, Man, and Cybernetics -Part A: Systems and Humans. 33 (2), 206-222.

Naghibi, S. S., Teshnehlab, M. & Shoorehdeli, M. A. “Breast Cancer Detection by Using Hierarchical Fuzzy Neural System with EKF Trainer”, IEEE Proceedings of the 17th Iranian Conference of Biomedical Engineering - ICBME2010, November-2010, pp. 1-4.

OMS – World Health Organization. http://www.who.int/en/

Pena-Reyes, C. A., & Sipper, M. (1999). Designing Breast Cancer Diagnostic System Via Hybrid Fuzzy-Genetic Methodology. IEEE International Fuzzy Systems Conference Proceeding. 135-139.

Polat, K., Sahan, S., Kodaz, H. E., & Gunes, S. (2007). Breast Cancer and Liver Disorders Classifications Using Artificial Immune Recognition System (AIRS) With Performance Evaluation by Fuzzy Resource Allocation Mechanism, Expert Systems with Applications, 32 (1), 172–183.

Song, H-J, Lee, S-G., & Park, G-T. (2005). A Methodology of Computer Aided Diagnostic System on Breast Cancer. Proceedings of the 2005 IEEE Conference on Control Applications Toronto, 831-836.

Wang, J-S., & Lee, C.S.G. Self-Adaptive Neuro-Fuzzy Inference Systems for Classification Applications. IEEE Transactions on Fuzzy Systems, 10 (6), 790-802.

Wang, J.-Y. (2005). Data Mining Analysis (Breast-Cancer Data). http://www.csie.ntu.edu.tw/ p88012/AI-final.pdf.

WBCD – Wisconsin Breast Cancer Data – UCI Machine Learning Repository. www.arquives.ics.uci.edu/ml/

Wolberg, W. H., & Mangasarian, O. L. (1990). Multisurface Method of Pattern Separation for Medical Diagnosis Applied to Breast Cytology. Proceedings of the National Academy of Sciences of USA, 87 (23), 9193-9196.

Zhao, W. & Davis, C. E. (2011). A Modified Artificial Immune System Based Pattern Recognition Approach – An Application to Clinical Diagnostics. Artificial Intelligence in Medicine. 52 (1), 1-9.

Downloads

Publicado

29/03/2022

Como Citar

SOUZA, S. S. F. de .; CHAVARETTE, F. R. .; LIMA, F. P. dos A. . Sistemas imunológicos artificiais aplicados ao diagnóstico clínico de amostras de câncer de mama. Research, Society and Development, [S. l.], v. 11, n. 5, p. e3711521941, 2022. DOI: 10.33448/rsd-v11i5.21941. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/21941. Acesso em: 21 nov. 2024.

Edição

Seção

Ciências Exatas e da Terra